Step |
Hyp |
Ref |
Expression |
1 |
|
relxp |
|- Rel ( A X. B ) |
2 |
|
tposfo2 |
|- ( Rel ( A X. B ) -> ( F : ( A X. B ) -onto-> C -> tpos F : `' ( A X. B ) -onto-> C ) ) |
3 |
1 2
|
ax-mp |
|- ( F : ( A X. B ) -onto-> C -> tpos F : `' ( A X. B ) -onto-> C ) |
4 |
|
cnvxp |
|- `' ( A X. B ) = ( B X. A ) |
5 |
|
foeq2 |
|- ( `' ( A X. B ) = ( B X. A ) -> ( tpos F : `' ( A X. B ) -onto-> C <-> tpos F : ( B X. A ) -onto-> C ) ) |
6 |
4 5
|
ax-mp |
|- ( tpos F : `' ( A X. B ) -onto-> C <-> tpos F : ( B X. A ) -onto-> C ) |
7 |
3 6
|
sylib |
|- ( F : ( A X. B ) -onto-> C -> tpos F : ( B X. A ) -onto-> C ) |