Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
|- ( A e. ( B ^m ( I X. J ) ) -> A : ( I X. J ) --> B ) |
2 |
|
tposf |
|- ( A : ( I X. J ) --> B -> tpos A : ( J X. I ) --> B ) |
3 |
1 2
|
syl |
|- ( A e. ( B ^m ( I X. J ) ) -> tpos A : ( J X. I ) --> B ) |
4 |
|
elmapex |
|- ( A e. ( B ^m ( I X. J ) ) -> ( B e. _V /\ ( I X. J ) e. _V ) ) |
5 |
|
cnvxp |
|- `' ( I X. J ) = ( J X. I ) |
6 |
|
cnvexg |
|- ( ( I X. J ) e. _V -> `' ( I X. J ) e. _V ) |
7 |
5 6
|
eqeltrrid |
|- ( ( I X. J ) e. _V -> ( J X. I ) e. _V ) |
8 |
7
|
anim2i |
|- ( ( B e. _V /\ ( I X. J ) e. _V ) -> ( B e. _V /\ ( J X. I ) e. _V ) ) |
9 |
|
elmapg |
|- ( ( B e. _V /\ ( J X. I ) e. _V ) -> ( tpos A e. ( B ^m ( J X. I ) ) <-> tpos A : ( J X. I ) --> B ) ) |
10 |
4 8 9
|
3syl |
|- ( A e. ( B ^m ( I X. J ) ) -> ( tpos A e. ( B ^m ( J X. I ) ) <-> tpos A : ( J X. I ) --> B ) ) |
11 |
3 10
|
mpbird |
|- ( A e. ( B ^m ( I X. J ) ) -> tpos A e. ( B ^m ( J X. I ) ) ) |