Step |
Hyp |
Ref |
Expression |
1 |
|
tpostpos |
|- tpos tpos F = ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
2 |
|
relrelss |
|- ( ( Rel F /\ Rel dom F ) <-> F C_ ( ( _V X. _V ) X. _V ) ) |
3 |
|
ssun1 |
|- ( _V X. _V ) C_ ( ( _V X. _V ) u. { (/) } ) |
4 |
|
xpss1 |
|- ( ( _V X. _V ) C_ ( ( _V X. _V ) u. { (/) } ) -> ( ( _V X. _V ) X. _V ) C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
5 |
3 4
|
ax-mp |
|- ( ( _V X. _V ) X. _V ) C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) |
6 |
|
sstr |
|- ( ( F C_ ( ( _V X. _V ) X. _V ) /\ ( ( _V X. _V ) X. _V ) C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) -> F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
7 |
5 6
|
mpan2 |
|- ( F C_ ( ( _V X. _V ) X. _V ) -> F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
8 |
2 7
|
sylbi |
|- ( ( Rel F /\ Rel dom F ) -> F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
9 |
|
df-ss |
|- ( F C_ ( ( ( _V X. _V ) u. { (/) } ) X. _V ) <-> ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) = F ) |
10 |
8 9
|
sylib |
|- ( ( Rel F /\ Rel dom F ) -> ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) = F ) |
11 |
1 10
|
eqtrid |
|- ( ( Rel F /\ Rel dom F ) -> tpos tpos F = F ) |