Metamath Proof Explorer


Theorem tppreq3

Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017)

Ref Expression
Assertion tppreq3
|- ( B = C -> { A , B , C } = { A , B } )

Proof

Step Hyp Ref Expression
1 tpeq3
 |-  ( C = B -> { A , B , C } = { A , B , B } )
2 1 eqcoms
 |-  ( B = C -> { A , B , C } = { A , B , B } )
3 tpidm23
 |-  { A , B , B } = { A , B }
4 2 3 eqtrdi
 |-  ( B = C -> { A , B , C } = { A , B } )