Description: Equality implies bijection. (Contributed by RP, 9-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcleq12lem | |- ( ( R = S /\ A = B ) -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ B /\ ( B o. B ) C_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleq1lem | |- ( R = S -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ A /\ ( A o. A ) C_ A ) ) ) |
|
| 2 | trcleq2lem | |- ( A = B -> ( ( S C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ B /\ ( B o. B ) C_ B ) ) ) |
|
| 3 | 1 2 | sylan9bb | |- ( ( R = S /\ A = B ) -> ( ( R C_ A /\ ( A o. A ) C_ A ) <-> ( S C_ B /\ ( B o. B ) C_ B ) ) ) |