Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | trel3 | |- ( Tr A -> ( ( B e. C /\ C e. D /\ D e. A ) -> B e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass | |- ( ( B e. C /\ C e. D /\ D e. A ) <-> ( B e. C /\ ( C e. D /\ D e. A ) ) ) |
|
2 | trel | |- ( Tr A -> ( ( C e. D /\ D e. A ) -> C e. A ) ) |
|
3 | 2 | anim2d | |- ( Tr A -> ( ( B e. C /\ ( C e. D /\ D e. A ) ) -> ( B e. C /\ C e. A ) ) ) |
4 | 1 3 | syl5bi | |- ( Tr A -> ( ( B e. C /\ C e. D /\ D e. A ) -> ( B e. C /\ C e. A ) ) ) |
5 | trel | |- ( Tr A -> ( ( B e. C /\ C e. A ) -> B e. A ) ) |
|
6 | 4 5 | syld | |- ( Tr A -> ( ( B e. C /\ C e. D /\ D e. A ) -> B e. A ) ) |