Metamath Proof Explorer


Theorem trel3

Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion trel3
|- ( Tr A -> ( ( B e. C /\ C e. D /\ D e. A ) -> B e. A ) )

Proof

Step Hyp Ref Expression
1 3anass
 |-  ( ( B e. C /\ C e. D /\ D e. A ) <-> ( B e. C /\ ( C e. D /\ D e. A ) ) )
2 trel
 |-  ( Tr A -> ( ( C e. D /\ D e. A ) -> C e. A ) )
3 2 anim2d
 |-  ( Tr A -> ( ( B e. C /\ ( C e. D /\ D e. A ) ) -> ( B e. C /\ C e. A ) ) )
4 1 3 syl5bi
 |-  ( Tr A -> ( ( B e. C /\ C e. D /\ D e. A ) -> ( B e. C /\ C e. A ) ) )
5 trel
 |-  ( Tr A -> ( ( B e. C /\ C e. A ) -> B e. A ) )
6 4 5 syld
 |-  ( Tr A -> ( ( B e. C /\ C e. D /\ D e. A ) -> B e. A ) )