Metamath Proof Explorer


Theorem treq

Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion treq
|- ( A = B -> ( Tr A <-> Tr B ) )

Proof

Step Hyp Ref Expression
1 unieq
 |-  ( A = B -> U. A = U. B )
2 1 sseq1d
 |-  ( A = B -> ( U. A C_ A <-> U. B C_ A ) )
3 sseq2
 |-  ( A = B -> ( U. B C_ A <-> U. B C_ B ) )
4 2 3 bitrd
 |-  ( A = B -> ( U. A C_ A <-> U. B C_ B ) )
5 df-tr
 |-  ( Tr A <-> U. A C_ A )
6 df-tr
 |-  ( Tr B <-> U. B C_ B )
7 4 5 6 3bitr4g
 |-  ( A = B -> ( Tr A <-> Tr B ) )