Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | treq | |- ( A = B -> ( Tr A <-> Tr B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq | |- ( A = B -> U. A = U. B ) |
|
2 | 1 | sseq1d | |- ( A = B -> ( U. A C_ A <-> U. B C_ A ) ) |
3 | sseq2 | |- ( A = B -> ( U. B C_ A <-> U. B C_ B ) ) |
|
4 | 2 3 | bitrd | |- ( A = B -> ( U. A C_ A <-> U. B C_ B ) ) |
5 | df-tr | |- ( Tr A <-> U. A C_ A ) |
|
6 | df-tr | |- ( Tr B <-> U. B C_ B ) |
|
7 | 4 5 6 | 3bitr4g | |- ( A = B -> ( Tr A <-> Tr B ) ) |