Description: Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trgcgrg.p | |- P = ( Base ` G ) |
|
trgcgrg.m | |- .- = ( dist ` G ) |
||
trgcgrg.r | |- .~ = ( cgrG ` G ) |
||
trgcgrg.g | |- ( ph -> G e. TarskiG ) |
||
trgcgrg.a | |- ( ph -> A e. P ) |
||
trgcgrg.b | |- ( ph -> B e. P ) |
||
trgcgrg.c | |- ( ph -> C e. P ) |
||
trgcgrg.d | |- ( ph -> D e. P ) |
||
trgcgrg.e | |- ( ph -> E e. P ) |
||
trgcgrg.f | |- ( ph -> F e. P ) |
||
trgcgr.1 | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
||
trgcgr.2 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
||
trgcgr.3 | |- ( ph -> ( C .- A ) = ( F .- D ) ) |
||
Assertion | trgcgr | |- ( ph -> <" A B C "> .~ <" D E F "> ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trgcgrg.p | |- P = ( Base ` G ) |
|
2 | trgcgrg.m | |- .- = ( dist ` G ) |
|
3 | trgcgrg.r | |- .~ = ( cgrG ` G ) |
|
4 | trgcgrg.g | |- ( ph -> G e. TarskiG ) |
|
5 | trgcgrg.a | |- ( ph -> A e. P ) |
|
6 | trgcgrg.b | |- ( ph -> B e. P ) |
|
7 | trgcgrg.c | |- ( ph -> C e. P ) |
|
8 | trgcgrg.d | |- ( ph -> D e. P ) |
|
9 | trgcgrg.e | |- ( ph -> E e. P ) |
|
10 | trgcgrg.f | |- ( ph -> F e. P ) |
|
11 | trgcgr.1 | |- ( ph -> ( A .- B ) = ( D .- E ) ) |
|
12 | trgcgr.2 | |- ( ph -> ( B .- C ) = ( E .- F ) ) |
|
13 | trgcgr.3 | |- ( ph -> ( C .- A ) = ( F .- D ) ) |
|
14 | 1 2 3 4 5 6 7 8 9 10 | trgcgrg | |- ( ph -> ( <" A B C "> .~ <" D E F "> <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
15 | 11 12 13 14 | mpbir3and | |- ( ph -> <" A B C "> .~ <" D E F "> ) |