Metamath Proof Explorer


Theorem trgcgr

Description: Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Hypotheses trgcgrg.p
|- P = ( Base ` G )
trgcgrg.m
|- .- = ( dist ` G )
trgcgrg.r
|- .~ = ( cgrG ` G )
trgcgrg.g
|- ( ph -> G e. TarskiG )
trgcgrg.a
|- ( ph -> A e. P )
trgcgrg.b
|- ( ph -> B e. P )
trgcgrg.c
|- ( ph -> C e. P )
trgcgrg.d
|- ( ph -> D e. P )
trgcgrg.e
|- ( ph -> E e. P )
trgcgrg.f
|- ( ph -> F e. P )
trgcgr.1
|- ( ph -> ( A .- B ) = ( D .- E ) )
trgcgr.2
|- ( ph -> ( B .- C ) = ( E .- F ) )
trgcgr.3
|- ( ph -> ( C .- A ) = ( F .- D ) )
Assertion trgcgr
|- ( ph -> <" A B C "> .~ <" D E F "> )

Proof

Step Hyp Ref Expression
1 trgcgrg.p
 |-  P = ( Base ` G )
2 trgcgrg.m
 |-  .- = ( dist ` G )
3 trgcgrg.r
 |-  .~ = ( cgrG ` G )
4 trgcgrg.g
 |-  ( ph -> G e. TarskiG )
5 trgcgrg.a
 |-  ( ph -> A e. P )
6 trgcgrg.b
 |-  ( ph -> B e. P )
7 trgcgrg.c
 |-  ( ph -> C e. P )
8 trgcgrg.d
 |-  ( ph -> D e. P )
9 trgcgrg.e
 |-  ( ph -> E e. P )
10 trgcgrg.f
 |-  ( ph -> F e. P )
11 trgcgr.1
 |-  ( ph -> ( A .- B ) = ( D .- E ) )
12 trgcgr.2
 |-  ( ph -> ( B .- C ) = ( E .- F ) )
13 trgcgr.3
 |-  ( ph -> ( C .- A ) = ( F .- D ) )
14 1 2 3 4 5 6 7 8 9 10 trgcgrg
 |-  ( ph -> ( <" A B C "> .~ <" D E F "> <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) )
15 11 12 13 14 mpbir3and
 |-  ( ph -> <" A B C "> .~ <" D E F "> )