Step |
Hyp |
Ref |
Expression |
1 |
|
trgcgrg.p |
|- P = ( Base ` G ) |
2 |
|
trgcgrg.m |
|- .- = ( dist ` G ) |
3 |
|
trgcgrg.r |
|- .~ = ( cgrG ` G ) |
4 |
|
trgcgrg.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
trgcgrg.a |
|- ( ph -> A e. P ) |
6 |
|
trgcgrg.b |
|- ( ph -> B e. P ) |
7 |
|
trgcgrg.c |
|- ( ph -> C e. P ) |
8 |
|
trgcgrg.d |
|- ( ph -> D e. P ) |
9 |
|
trgcgrg.e |
|- ( ph -> E e. P ) |
10 |
|
trgcgrg.f |
|- ( ph -> F e. P ) |
11 |
5 6 7
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
12 |
|
wrdf |
|- ( <" A B C "> e. Word P -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P ) |
13 |
11 12
|
syl |
|- ( ph -> <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P ) |
14 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
15 |
14
|
oveq2i |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = ( 0 ..^ 3 ) |
16 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
17 |
15 16
|
eqtri |
|- ( 0 ..^ ( # ` <" A B C "> ) ) = { 0 , 1 , 2 } |
18 |
17
|
feq2i |
|- ( <" A B C "> : ( 0 ..^ ( # ` <" A B C "> ) ) --> P <-> <" A B C "> : { 0 , 1 , 2 } --> P ) |
19 |
13 18
|
sylib |
|- ( ph -> <" A B C "> : { 0 , 1 , 2 } --> P ) |
20 |
19
|
fdmd |
|- ( ph -> dom <" A B C "> = { 0 , 1 , 2 } ) |
21 |
20
|
raleqdv |
|- ( ph -> ( A. j e. dom <" A B C "> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
22 |
20 21
|
raleqbidv |
|- ( ph -> ( A. i e. dom <" A B C "> A. j e. dom <" A B C "> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> A. i e. { 0 , 1 , 2 } A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
23 |
|
0re |
|- 0 e. RR |
24 |
|
1re |
|- 1 e. RR |
25 |
|
2re |
|- 2 e. RR |
26 |
|
tpssi |
|- ( ( 0 e. RR /\ 1 e. RR /\ 2 e. RR ) -> { 0 , 1 , 2 } C_ RR ) |
27 |
23 24 25 26
|
mp3an |
|- { 0 , 1 , 2 } C_ RR |
28 |
27
|
a1i |
|- ( ph -> { 0 , 1 , 2 } C_ RR ) |
29 |
8 9 10
|
s3cld |
|- ( ph -> <" D E F "> e. Word P ) |
30 |
|
wrdf |
|- ( <" D E F "> e. Word P -> <" D E F "> : ( 0 ..^ ( # ` <" D E F "> ) ) --> P ) |
31 |
29 30
|
syl |
|- ( ph -> <" D E F "> : ( 0 ..^ ( # ` <" D E F "> ) ) --> P ) |
32 |
|
s3len |
|- ( # ` <" D E F "> ) = 3 |
33 |
32
|
oveq2i |
|- ( 0 ..^ ( # ` <" D E F "> ) ) = ( 0 ..^ 3 ) |
34 |
33 16
|
eqtri |
|- ( 0 ..^ ( # ` <" D E F "> ) ) = { 0 , 1 , 2 } |
35 |
34
|
feq2i |
|- ( <" D E F "> : ( 0 ..^ ( # ` <" D E F "> ) ) --> P <-> <" D E F "> : { 0 , 1 , 2 } --> P ) |
36 |
31 35
|
sylib |
|- ( ph -> <" D E F "> : { 0 , 1 , 2 } --> P ) |
37 |
1 2 3 4 28 19 36
|
iscgrgd |
|- ( ph -> ( <" A B C "> .~ <" D E F "> <-> A. i e. dom <" A B C "> A. j e. dom <" A B C "> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
38 |
|
fveq2 |
|- ( j = 0 -> ( <" A B C "> ` j ) = ( <" A B C "> ` 0 ) ) |
39 |
|
s3fv0 |
|- ( A e. P -> ( <" A B C "> ` 0 ) = A ) |
40 |
5 39
|
syl |
|- ( ph -> ( <" A B C "> ` 0 ) = A ) |
41 |
38 40
|
sylan9eqr |
|- ( ( ph /\ j = 0 ) -> ( <" A B C "> ` j ) = A ) |
42 |
41
|
oveq2d |
|- ( ( ph /\ j = 0 ) -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" A B C "> ` i ) .- A ) ) |
43 |
|
fveq2 |
|- ( j = 0 -> ( <" D E F "> ` j ) = ( <" D E F "> ` 0 ) ) |
44 |
|
s3fv0 |
|- ( D e. P -> ( <" D E F "> ` 0 ) = D ) |
45 |
8 44
|
syl |
|- ( ph -> ( <" D E F "> ` 0 ) = D ) |
46 |
43 45
|
sylan9eqr |
|- ( ( ph /\ j = 0 ) -> ( <" D E F "> ` j ) = D ) |
47 |
46
|
oveq2d |
|- ( ( ph /\ j = 0 ) -> ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) = ( ( <" D E F "> ` i ) .- D ) ) |
48 |
42 47
|
eqeq12d |
|- ( ( ph /\ j = 0 ) -> ( ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
49 |
|
fveq2 |
|- ( j = 1 -> ( <" A B C "> ` j ) = ( <" A B C "> ` 1 ) ) |
50 |
|
s3fv1 |
|- ( B e. P -> ( <" A B C "> ` 1 ) = B ) |
51 |
6 50
|
syl |
|- ( ph -> ( <" A B C "> ` 1 ) = B ) |
52 |
49 51
|
sylan9eqr |
|- ( ( ph /\ j = 1 ) -> ( <" A B C "> ` j ) = B ) |
53 |
52
|
oveq2d |
|- ( ( ph /\ j = 1 ) -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" A B C "> ` i ) .- B ) ) |
54 |
|
fveq2 |
|- ( j = 1 -> ( <" D E F "> ` j ) = ( <" D E F "> ` 1 ) ) |
55 |
|
s3fv1 |
|- ( E e. P -> ( <" D E F "> ` 1 ) = E ) |
56 |
9 55
|
syl |
|- ( ph -> ( <" D E F "> ` 1 ) = E ) |
57 |
54 56
|
sylan9eqr |
|- ( ( ph /\ j = 1 ) -> ( <" D E F "> ` j ) = E ) |
58 |
57
|
oveq2d |
|- ( ( ph /\ j = 1 ) -> ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) = ( ( <" D E F "> ` i ) .- E ) ) |
59 |
53 58
|
eqeq12d |
|- ( ( ph /\ j = 1 ) -> ( ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
60 |
|
fveq2 |
|- ( j = 2 -> ( <" A B C "> ` j ) = ( <" A B C "> ` 2 ) ) |
61 |
|
s3fv2 |
|- ( C e. P -> ( <" A B C "> ` 2 ) = C ) |
62 |
7 61
|
syl |
|- ( ph -> ( <" A B C "> ` 2 ) = C ) |
63 |
60 62
|
sylan9eqr |
|- ( ( ph /\ j = 2 ) -> ( <" A B C "> ` j ) = C ) |
64 |
63
|
oveq2d |
|- ( ( ph /\ j = 2 ) -> ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" A B C "> ` i ) .- C ) ) |
65 |
|
fveq2 |
|- ( j = 2 -> ( <" D E F "> ` j ) = ( <" D E F "> ` 2 ) ) |
66 |
|
s3fv2 |
|- ( F e. P -> ( <" D E F "> ` 2 ) = F ) |
67 |
10 66
|
syl |
|- ( ph -> ( <" D E F "> ` 2 ) = F ) |
68 |
65 67
|
sylan9eqr |
|- ( ( ph /\ j = 2 ) -> ( <" D E F "> ` j ) = F ) |
69 |
68
|
oveq2d |
|- ( ( ph /\ j = 2 ) -> ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) = ( ( <" D E F "> ` i ) .- F ) ) |
70 |
64 69
|
eqeq12d |
|- ( ( ph /\ j = 2 ) -> ( ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
71 |
|
0red |
|- ( ph -> 0 e. RR ) |
72 |
|
1red |
|- ( ph -> 1 e. RR ) |
73 |
25
|
a1i |
|- ( ph -> 2 e. RR ) |
74 |
48 59 70 71 72 73
|
raltpd |
|- ( ph -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
75 |
74
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
76 |
|
fveq2 |
|- ( i = 0 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 0 ) ) |
77 |
76
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( <" A B C "> ` i ) = ( <" A B C "> ` 0 ) ) |
78 |
40
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" A B C "> ` 0 ) = A ) |
79 |
77 78
|
eqtr2d |
|- ( ( ph /\ i = 0 ) -> A = ( <" A B C "> ` i ) ) |
80 |
79
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( A .- A ) = ( ( <" A B C "> ` i ) .- A ) ) |
81 |
|
fveq2 |
|- ( i = 0 -> ( <" D E F "> ` i ) = ( <" D E F "> ` 0 ) ) |
82 |
81
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( <" D E F "> ` i ) = ( <" D E F "> ` 0 ) ) |
83 |
45
|
adantr |
|- ( ( ph /\ i = 0 ) -> ( <" D E F "> ` 0 ) = D ) |
84 |
82 83
|
eqtr2d |
|- ( ( ph /\ i = 0 ) -> D = ( <" D E F "> ` i ) ) |
85 |
84
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( D .- D ) = ( ( <" D E F "> ` i ) .- D ) ) |
86 |
80 85
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( A .- A ) = ( D .- D ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
87 |
79
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( A .- B ) = ( ( <" A B C "> ` i ) .- B ) ) |
88 |
84
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( D .- E ) = ( ( <" D E F "> ` i ) .- E ) ) |
89 |
87 88
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( A .- B ) = ( D .- E ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
90 |
79
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( A .- C ) = ( ( <" A B C "> ` i ) .- C ) ) |
91 |
84
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( D .- F ) = ( ( <" D E F "> ` i ) .- F ) ) |
92 |
90 91
|
eqeq12d |
|- ( ( ph /\ i = 0 ) -> ( ( A .- C ) = ( D .- F ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
93 |
86 89 92
|
3anbi123d |
|- ( ( ph /\ i = 0 ) -> ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
94 |
75 93
|
bitr4d |
|- ( ( ph /\ i = 0 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) ) ) |
95 |
74
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
96 |
|
fveq2 |
|- ( i = 1 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 1 ) ) |
97 |
96
|
adantl |
|- ( ( ph /\ i = 1 ) -> ( <" A B C "> ` i ) = ( <" A B C "> ` 1 ) ) |
98 |
51
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" A B C "> ` 1 ) = B ) |
99 |
97 98
|
eqtr2d |
|- ( ( ph /\ i = 1 ) -> B = ( <" A B C "> ` i ) ) |
100 |
99
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( B .- A ) = ( ( <" A B C "> ` i ) .- A ) ) |
101 |
|
fveq2 |
|- ( i = 1 -> ( <" D E F "> ` i ) = ( <" D E F "> ` 1 ) ) |
102 |
101
|
adantl |
|- ( ( ph /\ i = 1 ) -> ( <" D E F "> ` i ) = ( <" D E F "> ` 1 ) ) |
103 |
56
|
adantr |
|- ( ( ph /\ i = 1 ) -> ( <" D E F "> ` 1 ) = E ) |
104 |
102 103
|
eqtr2d |
|- ( ( ph /\ i = 1 ) -> E = ( <" D E F "> ` i ) ) |
105 |
104
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( E .- D ) = ( ( <" D E F "> ` i ) .- D ) ) |
106 |
100 105
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( B .- A ) = ( E .- D ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
107 |
99
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( B .- B ) = ( ( <" A B C "> ` i ) .- B ) ) |
108 |
104
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( E .- E ) = ( ( <" D E F "> ` i ) .- E ) ) |
109 |
107 108
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( B .- B ) = ( E .- E ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
110 |
99
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( B .- C ) = ( ( <" A B C "> ` i ) .- C ) ) |
111 |
104
|
oveq1d |
|- ( ( ph /\ i = 1 ) -> ( E .- F ) = ( ( <" D E F "> ` i ) .- F ) ) |
112 |
110 111
|
eqeq12d |
|- ( ( ph /\ i = 1 ) -> ( ( B .- C ) = ( E .- F ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
113 |
106 109 112
|
3anbi123d |
|- ( ( ph /\ i = 1 ) -> ( ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
114 |
95 113
|
bitr4d |
|- ( ( ph /\ i = 1 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) ) ) |
115 |
74
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
116 |
|
fveq2 |
|- ( i = 2 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 2 ) ) |
117 |
116
|
adantl |
|- ( ( ph /\ i = 2 ) -> ( <" A B C "> ` i ) = ( <" A B C "> ` 2 ) ) |
118 |
62
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( <" A B C "> ` 2 ) = C ) |
119 |
117 118
|
eqtr2d |
|- ( ( ph /\ i = 2 ) -> C = ( <" A B C "> ` i ) ) |
120 |
119
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( C .- A ) = ( ( <" A B C "> ` i ) .- A ) ) |
121 |
|
fveq2 |
|- ( i = 2 -> ( <" D E F "> ` i ) = ( <" D E F "> ` 2 ) ) |
122 |
121
|
adantl |
|- ( ( ph /\ i = 2 ) -> ( <" D E F "> ` i ) = ( <" D E F "> ` 2 ) ) |
123 |
67
|
adantr |
|- ( ( ph /\ i = 2 ) -> ( <" D E F "> ` 2 ) = F ) |
124 |
122 123
|
eqtr2d |
|- ( ( ph /\ i = 2 ) -> F = ( <" D E F "> ` i ) ) |
125 |
124
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( F .- D ) = ( ( <" D E F "> ` i ) .- D ) ) |
126 |
120 125
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( C .- A ) = ( F .- D ) <-> ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) ) ) |
127 |
119
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( C .- B ) = ( ( <" A B C "> ` i ) .- B ) ) |
128 |
124
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( F .- E ) = ( ( <" D E F "> ` i ) .- E ) ) |
129 |
127 128
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( C .- B ) = ( F .- E ) <-> ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) ) ) |
130 |
119
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( C .- C ) = ( ( <" A B C "> ` i ) .- C ) ) |
131 |
124
|
oveq1d |
|- ( ( ph /\ i = 2 ) -> ( F .- F ) = ( ( <" D E F "> ` i ) .- F ) ) |
132 |
130 131
|
eqeq12d |
|- ( ( ph /\ i = 2 ) -> ( ( C .- C ) = ( F .- F ) <-> ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) |
133 |
126 129 132
|
3anbi123d |
|- ( ( ph /\ i = 2 ) -> ( ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) <-> ( ( ( <" A B C "> ` i ) .- A ) = ( ( <" D E F "> ` i ) .- D ) /\ ( ( <" A B C "> ` i ) .- B ) = ( ( <" D E F "> ` i ) .- E ) /\ ( ( <" A B C "> ` i ) .- C ) = ( ( <" D E F "> ` i ) .- F ) ) ) ) |
134 |
115 133
|
bitr4d |
|- ( ( ph /\ i = 2 ) -> ( A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) ) |
135 |
94 114 134 71 72 73
|
raltpd |
|- ( ph -> ( A. i e. { 0 , 1 , 2 } A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) <-> ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) /\ ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) /\ ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) ) ) |
136 |
|
an33rean |
|- ( ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) /\ ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) /\ ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) <-> ( ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) /\ ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) ) |
137 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
138 |
1 2 137 4 5 8
|
tgcgrtriv |
|- ( ph -> ( A .- A ) = ( D .- D ) ) |
139 |
1 2 137 4 6 9
|
tgcgrtriv |
|- ( ph -> ( B .- B ) = ( E .- E ) ) |
140 |
1 2 137 4 7 10
|
tgcgrtriv |
|- ( ph -> ( C .- C ) = ( F .- F ) ) |
141 |
138 139 140
|
3jca |
|- ( ph -> ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) ) |
142 |
141
|
biantrurd |
|- ( ph -> ( ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) <-> ( ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) /\ ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) ) ) |
143 |
|
simprl |
|- ( ( ph /\ ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) ) -> ( A .- B ) = ( D .- E ) ) |
144 |
|
simpr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> ( A .- B ) = ( D .- E ) ) |
145 |
4
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> G e. TarskiG ) |
146 |
5
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> A e. P ) |
147 |
6
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> B e. P ) |
148 |
8
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> D e. P ) |
149 |
9
|
adantr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> E e. P ) |
150 |
1 2 137 145 146 147 148 149 144
|
tgcgrcomlr |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> ( B .- A ) = ( E .- D ) ) |
151 |
144 150
|
jca |
|- ( ( ph /\ ( A .- B ) = ( D .- E ) ) -> ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) ) |
152 |
143 151
|
impbida |
|- ( ph -> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) <-> ( A .- B ) = ( D .- E ) ) ) |
153 |
|
simprl |
|- ( ( ph /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) ) -> ( B .- C ) = ( E .- F ) ) |
154 |
|
simpr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> ( B .- C ) = ( E .- F ) ) |
155 |
4
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> G e. TarskiG ) |
156 |
6
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> B e. P ) |
157 |
7
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> C e. P ) |
158 |
9
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> E e. P ) |
159 |
10
|
adantr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> F e. P ) |
160 |
1 2 137 155 156 157 158 159 154
|
tgcgrcomlr |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> ( C .- B ) = ( F .- E ) ) |
161 |
154 160
|
jca |
|- ( ( ph /\ ( B .- C ) = ( E .- F ) ) -> ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) ) |
162 |
153 161
|
impbida |
|- ( ph -> ( ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) <-> ( B .- C ) = ( E .- F ) ) ) |
163 |
|
simprr |
|- ( ( ph /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) -> ( C .- A ) = ( F .- D ) ) |
164 |
4
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> G e. TarskiG ) |
165 |
7
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> C e. P ) |
166 |
5
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> A e. P ) |
167 |
10
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> F e. P ) |
168 |
8
|
adantr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> D e. P ) |
169 |
|
simpr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> ( C .- A ) = ( F .- D ) ) |
170 |
1 2 137 164 165 166 167 168 169
|
tgcgrcomlr |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> ( A .- C ) = ( D .- F ) ) |
171 |
170 169
|
jca |
|- ( ( ph /\ ( C .- A ) = ( F .- D ) ) -> ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) |
172 |
163 171
|
impbida |
|- ( ph -> ( ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) <-> ( C .- A ) = ( F .- D ) ) ) |
173 |
152 162 172
|
3anbi123d |
|- ( ph -> ( ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
174 |
142 173
|
bitr3d |
|- ( ph -> ( ( ( ( A .- A ) = ( D .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( C .- C ) = ( F .- F ) ) /\ ( ( ( A .- B ) = ( D .- E ) /\ ( B .- A ) = ( E .- D ) ) /\ ( ( B .- C ) = ( E .- F ) /\ ( C .- B ) = ( F .- E ) ) /\ ( ( A .- C ) = ( D .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
175 |
136 174
|
syl5bb |
|- ( ph -> ( ( ( ( A .- A ) = ( D .- D ) /\ ( A .- B ) = ( D .- E ) /\ ( A .- C ) = ( D .- F ) ) /\ ( ( B .- A ) = ( E .- D ) /\ ( B .- B ) = ( E .- E ) /\ ( B .- C ) = ( E .- F ) ) /\ ( ( C .- A ) = ( F .- D ) /\ ( C .- B ) = ( F .- E ) /\ ( C .- C ) = ( F .- F ) ) ) <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
176 |
135 175
|
bitr2d |
|- ( ph -> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) <-> A. i e. { 0 , 1 , 2 } A. j e. { 0 , 1 , 2 } ( ( <" A B C "> ` i ) .- ( <" A B C "> ` j ) ) = ( ( <" D E F "> ` i ) .- ( <" D E F "> ` j ) ) ) ) |
177 |
22 37 176
|
3bitr4d |
|- ( ph -> ( <" A B C "> .~ <" D E F "> <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |