| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
|- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
| 2 |
|
trss |
|- ( Tr A -> ( x e. A -> x C_ A ) ) |
| 3 |
|
trss |
|- ( Tr B -> ( x e. B -> x C_ B ) ) |
| 4 |
2 3
|
im2anan9 |
|- ( ( Tr A /\ Tr B ) -> ( ( x e. A /\ x e. B ) -> ( x C_ A /\ x C_ B ) ) ) |
| 5 |
1 4
|
biimtrid |
|- ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> ( x C_ A /\ x C_ B ) ) ) |
| 6 |
|
ssin |
|- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) |
| 7 |
5 6
|
imbitrdi |
|- ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> x C_ ( A i^i B ) ) ) |
| 8 |
7
|
ralrimiv |
|- ( ( Tr A /\ Tr B ) -> A. x e. ( A i^i B ) x C_ ( A i^i B ) ) |
| 9 |
|
dftr3 |
|- ( Tr ( A i^i B ) <-> A. x e. ( A i^i B ) x C_ ( A i^i B ) ) |
| 10 |
8 9
|
sylibr |
|- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) ) |