Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
2 |
|
trss |
|- ( Tr A -> ( x e. A -> x C_ A ) ) |
3 |
|
trss |
|- ( Tr B -> ( x e. B -> x C_ B ) ) |
4 |
2 3
|
im2anan9 |
|- ( ( Tr A /\ Tr B ) -> ( ( x e. A /\ x e. B ) -> ( x C_ A /\ x C_ B ) ) ) |
5 |
1 4
|
syl5bi |
|- ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> ( x C_ A /\ x C_ B ) ) ) |
6 |
|
ssin |
|- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) |
7 |
5 6
|
syl6ib |
|- ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> x C_ ( A i^i B ) ) ) |
8 |
7
|
ralrimiv |
|- ( ( Tr A /\ Tr B ) -> A. x e. ( A i^i B ) x C_ ( A i^i B ) ) |
9 |
|
dftr3 |
|- ( Tr ( A i^i B ) <-> A. x e. ( A i^i B ) x C_ ( A i^i B ) ) |
10 |
8 9
|
sylibr |
|- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) ) |