Metamath Proof Explorer


Theorem trin

Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994)

Ref Expression
Assertion trin
|- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
2 trss
 |-  ( Tr A -> ( x e. A -> x C_ A ) )
3 trss
 |-  ( Tr B -> ( x e. B -> x C_ B ) )
4 2 3 im2anan9
 |-  ( ( Tr A /\ Tr B ) -> ( ( x e. A /\ x e. B ) -> ( x C_ A /\ x C_ B ) ) )
5 1 4 syl5bi
 |-  ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> ( x C_ A /\ x C_ B ) ) )
6 ssin
 |-  ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) )
7 5 6 syl6ib
 |-  ( ( Tr A /\ Tr B ) -> ( x e. ( A i^i B ) -> x C_ ( A i^i B ) ) )
8 7 ralrimiv
 |-  ( ( Tr A /\ Tr B ) -> A. x e. ( A i^i B ) x C_ ( A i^i B ) )
9 dftr3
 |-  ( Tr ( A i^i B ) <-> A. x e. ( A i^i B ) x C_ ( A i^i B ) )
10 8 9 sylibr
 |-  ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) )