Step |
Hyp |
Ref |
Expression |
1 |
|
trireciplem.1 |
|- F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
4 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
5 |
|
nnex |
|- NN e. _V |
6 |
5
|
mptex |
|- ( n e. NN |-> ( 1 / ( n + 1 ) ) ) e. _V |
7 |
6
|
a1i |
|- ( T. -> ( n e. NN |-> ( 1 / ( n + 1 ) ) ) e. _V ) |
8 |
|
oveq1 |
|- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
9 |
8
|
oveq2d |
|- ( n = k -> ( 1 / ( n + 1 ) ) = ( 1 / ( k + 1 ) ) ) |
10 |
|
eqid |
|- ( n e. NN |-> ( 1 / ( n + 1 ) ) ) = ( n e. NN |-> ( 1 / ( n + 1 ) ) ) |
11 |
|
ovex |
|- ( 1 / ( k + 1 ) ) e. _V |
12 |
9 10 11
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) = ( 1 / ( k + 1 ) ) ) |
13 |
12
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) = ( 1 / ( k + 1 ) ) ) |
14 |
2 3 4 3 7 13
|
divcnvshft |
|- ( T. -> ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ~~> 0 ) |
15 |
|
seqex |
|- seq 1 ( + , F ) e. _V |
16 |
15
|
a1i |
|- ( T. -> seq 1 ( + , F ) e. _V ) |
17 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
18 |
17
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( k + 1 ) e. NN ) |
19 |
18
|
nnrecred |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. RR ) |
20 |
19
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. CC ) |
21 |
13 20
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) e. CC ) |
22 |
13
|
oveq2d |
|- ( ( T. /\ k e. NN ) -> ( 1 - ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) ) = ( 1 - ( 1 / ( k + 1 ) ) ) ) |
23 |
|
elfznn |
|- ( j e. ( 1 ... k ) -> j e. NN ) |
24 |
23
|
adantl |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. NN ) |
25 |
24
|
nncnd |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. CC ) |
26 |
|
peano2cn |
|- ( j e. CC -> ( j + 1 ) e. CC ) |
27 |
25 26
|
syl |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j + 1 ) e. CC ) |
28 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
29 |
24 28
|
syl |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j + 1 ) e. NN ) |
30 |
24 29
|
nnmulcld |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. ( j + 1 ) ) e. NN ) |
31 |
30
|
nncnd |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. ( j + 1 ) ) e. CC ) |
32 |
30
|
nnne0d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
33 |
27 25 31 32
|
divsubdird |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) - j ) / ( j x. ( j + 1 ) ) ) = ( ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) - ( j / ( j x. ( j + 1 ) ) ) ) ) |
34 |
|
ax-1cn |
|- 1 e. CC |
35 |
|
pncan2 |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - j ) = 1 ) |
36 |
25 34 35
|
sylancl |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) - j ) = 1 ) |
37 |
36
|
oveq1d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) - j ) / ( j x. ( j + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
38 |
27
|
mulid1d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) x. 1 ) = ( j + 1 ) ) |
39 |
27 25
|
mulcomd |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) x. j ) = ( j x. ( j + 1 ) ) ) |
40 |
38 39
|
oveq12d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) x. 1 ) / ( ( j + 1 ) x. j ) ) = ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) ) |
41 |
|
1cnd |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> 1 e. CC ) |
42 |
24
|
nnne0d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j =/= 0 ) |
43 |
29
|
nnne0d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j + 1 ) =/= 0 ) |
44 |
41 25 27 42 43
|
divcan5d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) x. 1 ) / ( ( j + 1 ) x. j ) ) = ( 1 / j ) ) |
45 |
40 44
|
eqtr3d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) = ( 1 / j ) ) |
46 |
25
|
mulid1d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. 1 ) = j ) |
47 |
46
|
oveq1d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j x. 1 ) / ( j x. ( j + 1 ) ) ) = ( j / ( j x. ( j + 1 ) ) ) ) |
48 |
41 27 25 43 42
|
divcan5d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j x. 1 ) / ( j x. ( j + 1 ) ) ) = ( 1 / ( j + 1 ) ) ) |
49 |
47 48
|
eqtr3d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j / ( j x. ( j + 1 ) ) ) = ( 1 / ( j + 1 ) ) ) |
50 |
45 49
|
oveq12d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) - ( j / ( j x. ( j + 1 ) ) ) ) = ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) ) |
51 |
33 37 50
|
3eqtr3d |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) = ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) ) |
52 |
51
|
sumeq2dv |
|- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( 1 / ( j x. ( j + 1 ) ) ) = sum_ j e. ( 1 ... k ) ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) ) |
53 |
|
oveq2 |
|- ( n = j -> ( 1 / n ) = ( 1 / j ) ) |
54 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( 1 / n ) = ( 1 / ( j + 1 ) ) ) |
55 |
|
oveq2 |
|- ( n = 1 -> ( 1 / n ) = ( 1 / 1 ) ) |
56 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
57 |
55 56
|
eqtrdi |
|- ( n = 1 -> ( 1 / n ) = 1 ) |
58 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) |
59 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
60 |
59
|
adantl |
|- ( ( T. /\ k e. NN ) -> k e. ZZ ) |
61 |
18 2
|
eleqtrdi |
|- ( ( T. /\ k e. NN ) -> ( k + 1 ) e. ( ZZ>= ` 1 ) ) |
62 |
|
elfznn |
|- ( n e. ( 1 ... ( k + 1 ) ) -> n e. NN ) |
63 |
62
|
adantl |
|- ( ( ( T. /\ k e. NN ) /\ n e. ( 1 ... ( k + 1 ) ) ) -> n e. NN ) |
64 |
63
|
nnrecred |
|- ( ( ( T. /\ k e. NN ) /\ n e. ( 1 ... ( k + 1 ) ) ) -> ( 1 / n ) e. RR ) |
65 |
64
|
recnd |
|- ( ( ( T. /\ k e. NN ) /\ n e. ( 1 ... ( k + 1 ) ) ) -> ( 1 / n ) e. CC ) |
66 |
53 54 57 58 60 61 65
|
telfsum |
|- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) = ( 1 - ( 1 / ( k + 1 ) ) ) ) |
67 |
52 66
|
eqtrd |
|- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( 1 / ( j x. ( j + 1 ) ) ) = ( 1 - ( 1 / ( k + 1 ) ) ) ) |
68 |
|
id |
|- ( n = j -> n = j ) |
69 |
|
oveq1 |
|- ( n = j -> ( n + 1 ) = ( j + 1 ) ) |
70 |
68 69
|
oveq12d |
|- ( n = j -> ( n x. ( n + 1 ) ) = ( j x. ( j + 1 ) ) ) |
71 |
70
|
oveq2d |
|- ( n = j -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
72 |
|
ovex |
|- ( 1 / ( j x. ( j + 1 ) ) ) e. _V |
73 |
71 1 72
|
fvmpt |
|- ( j e. NN -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
74 |
24 73
|
syl |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
75 |
|
simpr |
|- ( ( T. /\ k e. NN ) -> k e. NN ) |
76 |
75 2
|
eleqtrdi |
|- ( ( T. /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
77 |
30
|
nnrecred |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
78 |
77
|
recnd |
|- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
79 |
74 76 78
|
fsumser |
|- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( 1 / ( j x. ( j + 1 ) ) ) = ( seq 1 ( + , F ) ` k ) ) |
80 |
22 67 79
|
3eqtr2rd |
|- ( ( T. /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) = ( 1 - ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) ) ) |
81 |
2 3 14 4 16 21 80
|
climsubc2 |
|- ( T. -> seq 1 ( + , F ) ~~> ( 1 - 0 ) ) |
82 |
81
|
mptru |
|- seq 1 ( + , F ) ~~> ( 1 - 0 ) |
83 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
84 |
82 83
|
breqtri |
|- seq 1 ( + , F ) ~~> 1 |