Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trivsubgd.1 | |- B = ( Base ` G ) |
|
trivsubgd.2 | |- .0. = ( 0g ` G ) |
||
trivsubgd.3 | |- ( ph -> G e. Grp ) |
||
trivsubgd.4 | |- ( ph -> B = { .0. } ) |
||
trivsubgd.5 | |- ( ph -> A e. ( SubGrp ` G ) ) |
||
Assertion | trivsubgd | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trivsubgd.1 | |- B = ( Base ` G ) |
|
2 | trivsubgd.2 | |- .0. = ( 0g ` G ) |
|
3 | trivsubgd.3 | |- ( ph -> G e. Grp ) |
|
4 | trivsubgd.4 | |- ( ph -> B = { .0. } ) |
|
5 | trivsubgd.5 | |- ( ph -> A e. ( SubGrp ` G ) ) |
|
6 | 1 | subgss | |- ( A e. ( SubGrp ` G ) -> A C_ B ) |
7 | 5 6 | syl | |- ( ph -> A C_ B ) |
8 | 7 4 | sseqtrd | |- ( ph -> A C_ { .0. } ) |
9 | 2 | subg0cl | |- ( A e. ( SubGrp ` G ) -> .0. e. A ) |
10 | 5 9 | syl | |- ( ph -> .0. e. A ) |
11 | 10 | snssd | |- ( ph -> { .0. } C_ A ) |
12 | 8 11 | eqssd | |- ( ph -> A = { .0. } ) |
13 | 12 4 | eqtr4d | |- ( ph -> A = B ) |