| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trivsubgsnd.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | trivsubgsnd.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | trivsubgsnd.3 |  |-  ( ph -> G e. Grp ) | 
						
							| 4 |  | trivsubgsnd.4 |  |-  ( ph -> B = { .0. } ) | 
						
							| 5 | 3 | adantr |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> G e. Grp ) | 
						
							| 6 | 4 | adantr |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> B = { .0. } ) | 
						
							| 7 |  | simpr |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. ( SubGrp ` G ) ) | 
						
							| 8 | 1 2 5 6 7 | trivsubgd |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> x = B ) | 
						
							| 9 |  | velsn |  |-  ( x e. { B } <-> x = B ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( ph /\ x e. ( SubGrp ` G ) ) -> x e. { B } ) | 
						
							| 11 | 10 | ex |  |-  ( ph -> ( x e. ( SubGrp ` G ) -> x e. { B } ) ) | 
						
							| 12 | 11 | ssrdv |  |-  ( ph -> ( SubGrp ` G ) C_ { B } ) | 
						
							| 13 | 1 | subgid |  |-  ( G e. Grp -> B e. ( SubGrp ` G ) ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> B e. ( SubGrp ` G ) ) | 
						
							| 15 | 14 | snssd |  |-  ( ph -> { B } C_ ( SubGrp ` G ) ) | 
						
							| 16 | 12 15 | eqssd |  |-  ( ph -> ( SubGrp ` G ) = { B } ) |