Description: The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } | 
					|
| Assertion | trkgdist | |- ( D e. V -> D = ( dist ` W ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trkgstr.w |  |-  W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } | 
						|
| 2 | 1 | trkgstr | |- W Struct <. 1 , ; 1 6 >.  | 
						
| 3 | dsid | |- dist = Slot ( dist ` ndx )  | 
						|
| 4 | snsstp2 |  |-  { <. ( dist ` ndx ) , D >. } C_ { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } | 
						|
| 5 | 4 1 | sseqtrri |  |-  { <. ( dist ` ndx ) , D >. } C_ W | 
						
| 6 | 2 3 5 | strfv | |- ( D e. V -> D = ( dist ` W ) )  |