Description: The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
| Assertion | trkgitv | |- ( I e. V -> I = ( Itv ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
| 2 | 1 | trkgstr | |- W Struct <. 1 , ; 1 6 >. |
| 3 | itvid | |- Itv = Slot ( Itv ` ndx ) |
|
| 4 | snsstp3 | |- { <. ( Itv ` ndx ) , I >. } C_ { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
| 5 | 4 1 | sseqtrri | |- { <. ( Itv ` ndx ) , I >. } C_ W |
| 6 | 2 3 5 | strfv | |- ( I e. V -> I = ( Itv ` W ) ) |