Metamath Proof Explorer


Theorem trkgitv

Description: The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w
|- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
Assertion trkgitv
|- ( I e. V -> I = ( Itv ` W ) )

Proof

Step Hyp Ref Expression
1 trkgstr.w
 |-  W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
2 1 trkgstr
 |-  W Struct <. 1 , ; 1 6 >.
3 itvid
 |-  Itv = Slot ( Itv ` ndx )
4 snsstp3
 |-  { <. ( Itv ` ndx ) , I >. } C_ { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
5 4 1 sseqtrri
 |-  { <. ( Itv ` ndx ) , I >. } C_ W
6 2 3 5 strfv
 |-  ( I e. V -> I = ( Itv ` W ) )