Description: The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
Assertion | trkgitv | |- ( I e. V -> I = ( Itv ` W ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
2 | 1 | trkgstr | |- W Struct <. 1 , ; 1 6 >. |
3 | itvid | |- Itv = Slot ( Itv ` ndx ) |
|
4 | snsstp3 | |- { <. ( Itv ` ndx ) , I >. } C_ { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
5 | 4 1 | sseqtrri | |- { <. ( Itv ` ndx ) , I >. } C_ W |
6 | 2 3 5 | strfv | |- ( I e. V -> I = ( Itv ` W ) ) |