Metamath Proof Explorer


Theorem trkgstr

Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w
|- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
Assertion trkgstr
|- W Struct <. 1 , ; 1 6 >.

Proof

Step Hyp Ref Expression
1 trkgstr.w
 |-  W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
2 1nn
 |-  1 e. NN
3 basendx
 |-  ( Base ` ndx ) = 1
4 2nn0
 |-  2 e. NN0
5 1nn0
 |-  1 e. NN0
6 1lt10
 |-  1 < ; 1 0
7 2 4 5 6 declti
 |-  1 < ; 1 2
8 2nn
 |-  2 e. NN
9 5 8 decnncl
 |-  ; 1 2 e. NN
10 dsndx
 |-  ( dist ` ndx ) = ; 1 2
11 6nn
 |-  6 e. NN
12 2lt6
 |-  2 < 6
13 5 4 11 12 declt
 |-  ; 1 2 < ; 1 6
14 5 11 decnncl
 |-  ; 1 6 e. NN
15 itvndx
 |-  ( Itv ` ndx ) = ; 1 6
16 2 3 7 9 10 13 14 15 strle3
 |-  { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } Struct <. 1 , ; 1 6 >.
17 1 16 eqbrtri
 |-  W Struct <. 1 , ; 1 6 >.