Description: Functionality of a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
Assertion | trkgstr | |- W Struct <. 1 , ; 1 6 >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } |
|
2 | 1nn | |- 1 e. NN |
|
3 | basendx | |- ( Base ` ndx ) = 1 |
|
4 | 2nn0 | |- 2 e. NN0 |
|
5 | 1nn0 | |- 1 e. NN0 |
|
6 | 1lt10 | |- 1 < ; 1 0 |
|
7 | 2 4 5 6 | declti | |- 1 < ; 1 2 |
8 | 2nn | |- 2 e. NN |
|
9 | 5 8 | decnncl | |- ; 1 2 e. NN |
10 | dsndx | |- ( dist ` ndx ) = ; 1 2 |
|
11 | 6nn | |- 6 e. NN |
|
12 | 2lt6 | |- 2 < 6 |
|
13 | 5 4 11 12 | declt | |- ; 1 2 < ; 1 6 |
14 | 5 11 | decnncl | |- ; 1 6 e. NN |
15 | itvndx | |- ( Itv ` ndx ) = ; 1 6 |
|
16 | 2 3 7 9 10 13 14 15 | strle3 | |- { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } Struct <. 1 , ; 1 6 >. |
17 | 1 16 | eqbrtri | |- W Struct <. 1 , ; 1 6 >. |