Step |
Hyp |
Ref |
Expression |
1 |
|
trl0a.z |
|- .0. = ( 0. ` K ) |
2 |
|
trl0a.a |
|- A = ( Atoms ` K ) |
3 |
|
trl0a.h |
|- H = ( LHyp ` K ) |
4 |
|
trl0a.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
trl0a.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
7 |
6
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) e. A ) -> K e. AtLat ) |
8 |
1 2
|
atn0 |
|- ( ( K e. AtLat /\ ( R ` F ) e. A ) -> ( R ` F ) =/= .0. ) |
9 |
7 8
|
sylancom |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) e. A ) -> ( R ` F ) =/= .0. ) |
10 |
9
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A -> ( R ` F ) =/= .0. ) ) |
11 |
1 2 3 4 5
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A \/ ( R ` F ) = .0. ) ) |
12 |
11
|
ord |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( -. ( R ` F ) e. A -> ( R ` F ) = .0. ) ) |
13 |
12
|
necon1ad |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) =/= .0. -> ( R ` F ) e. A ) ) |
14 |
10 13
|
impbid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A <-> ( R ` F ) =/= .0. ) ) |