Metamath Proof Explorer


Theorem trlatn0

Description: The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trl0a.z
|- .0. = ( 0. ` K )
trl0a.a
|- A = ( Atoms ` K )
trl0a.h
|- H = ( LHyp ` K )
trl0a.t
|- T = ( ( LTrn ` K ) ` W )
trl0a.r
|- R = ( ( trL ` K ) ` W )
Assertion trlatn0
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A <-> ( R ` F ) =/= .0. ) )

Proof

Step Hyp Ref Expression
1 trl0a.z
 |-  .0. = ( 0. ` K )
2 trl0a.a
 |-  A = ( Atoms ` K )
3 trl0a.h
 |-  H = ( LHyp ` K )
4 trl0a.t
 |-  T = ( ( LTrn ` K ) ` W )
5 trl0a.r
 |-  R = ( ( trL ` K ) ` W )
6 hlatl
 |-  ( K e. HL -> K e. AtLat )
7 6 ad3antrrr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) e. A ) -> K e. AtLat )
8 1 2 atn0
 |-  ( ( K e. AtLat /\ ( R ` F ) e. A ) -> ( R ` F ) =/= .0. )
9 7 8 sylancom
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) e. A ) -> ( R ` F ) =/= .0. )
10 9 ex
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A -> ( R ` F ) =/= .0. ) )
11 1 2 3 4 5 trlator0
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A \/ ( R ` F ) = .0. ) )
12 11 ord
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( -. ( R ` F ) e. A -> ( R ` F ) = .0. ) )
13 12 necon1ad
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) =/= .0. -> ( R ` F ) e. A ) )
14 10 13 impbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A <-> ( R ` F ) =/= .0. ) )