Step |
Hyp |
Ref |
Expression |
1 |
|
trl0a.z |
|- .0. = ( 0. ` K ) |
2 |
|
trl0a.a |
|- A = ( Atoms ` K ) |
3 |
|
trl0a.h |
|- H = ( LHyp ` K ) |
4 |
|
trl0a.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
trl0a.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
df-ne |
|- ( ( R ` F ) =/= .0. <-> -. ( R ` F ) = .0. ) |
7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
8 |
7 2 3
|
lhpexnle |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A -. p ( le ` K ) W ) |
9 |
8
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) -> E. p e. A -. p ( le ` K ) W ) |
10 |
|
simplll |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( p e. A /\ -. p ( le ` K ) W ) ) |
12 |
|
simpllr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> F e. T ) |
13 |
|
simplr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( R ` F ) =/= .0. ) |
14 |
10
|
adantr |
|- ( ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) /\ ( F ` p ) = p ) -> ( K e. HL /\ W e. H ) ) |
15 |
|
simplr |
|- ( ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) /\ ( F ` p ) = p ) -> ( p e. A /\ -. p ( le ` K ) W ) ) |
16 |
12
|
adantr |
|- ( ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) /\ ( F ` p ) = p ) -> F e. T ) |
17 |
|
simpr |
|- ( ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) /\ ( F ` p ) = p ) -> ( F ` p ) = p ) |
18 |
7 1 2 3 4 5
|
trl0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F e. T /\ ( F ` p ) = p ) ) -> ( R ` F ) = .0. ) |
19 |
14 15 16 17 18
|
syl112anc |
|- ( ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) /\ ( F ` p ) = p ) -> ( R ` F ) = .0. ) |
20 |
19
|
ex |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) = p -> ( R ` F ) = .0. ) ) |
21 |
20
|
necon3d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( ( R ` F ) =/= .0. -> ( F ` p ) =/= p ) ) |
22 |
13 21
|
mpd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( F ` p ) =/= p ) |
23 |
7 2 3 4 5
|
trlat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F e. T /\ ( F ` p ) =/= p ) ) -> ( R ` F ) e. A ) |
24 |
10 11 12 22 23
|
syl112anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( R ` F ) e. A ) |
25 |
9 24
|
rexlimddv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( R ` F ) =/= .0. ) -> ( R ` F ) e. A ) |
26 |
25
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) =/= .0. -> ( R ` F ) e. A ) ) |
27 |
6 26
|
syl5bir |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( -. ( R ` F ) = .0. -> ( R ` F ) e. A ) ) |
28 |
27
|
orrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) = .0. \/ ( R ` F ) e. A ) ) |
29 |
28
|
orcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A \/ ( R ` F ) = .0. ) ) |