| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlcnv.h |
|- H = ( LHyp ` K ) |
| 2 |
|
trlcnv.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
trlcnv.r |
|- R = ( ( trL ` K ) ` W ) |
| 4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 5 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 6 |
4 5 1
|
lhpexnle |
|- ( ( K e. HL /\ W e. H ) -> E. p e. ( Atoms ` K ) -. p ( le ` K ) W ) |
| 7 |
6
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> E. p e. ( Atoms ` K ) -. p ( le ` K ) W ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
8 1 2
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 10 |
9
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 11 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> p e. ( Atoms ` K ) ) |
| 12 |
8 5
|
atbase |
|- ( p e. ( Atoms ` K ) -> p e. ( Base ` K ) ) |
| 13 |
11 12
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> p e. ( Base ` K ) ) |
| 14 |
|
f1ocnvfv1 |
|- ( ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) /\ p e. ( Base ` K ) ) -> ( `' F ` ( F ` p ) ) = p ) |
| 15 |
10 13 14
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( `' F ` ( F ` p ) ) = p ) |
| 16 |
15
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) ( join ` K ) ( `' F ` ( F ` p ) ) ) = ( ( F ` p ) ( join ` K ) p ) ) |
| 17 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> K e. HL ) |
| 18 |
4 5 1 2
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ p e. ( Atoms ` K ) ) -> ( F ` p ) e. ( Atoms ` K ) ) |
| 19 |
18
|
3adant3r |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( F ` p ) e. ( Atoms ` K ) ) |
| 20 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 21 |
20 5
|
hlatjcom |
|- ( ( K e. HL /\ ( F ` p ) e. ( Atoms ` K ) /\ p e. ( Atoms ` K ) ) -> ( ( F ` p ) ( join ` K ) p ) = ( p ( join ` K ) ( F ` p ) ) ) |
| 22 |
17 19 11 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) ( join ` K ) p ) = ( p ( join ` K ) ( F ` p ) ) ) |
| 23 |
16 22
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) ( join ` K ) ( `' F ` ( F ` p ) ) ) = ( p ( join ` K ) ( F ` p ) ) ) |
| 24 |
23
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( ( F ` p ) ( join ` K ) ( `' F ` ( F ` p ) ) ) ( meet ` K ) W ) = ( ( p ( join ` K ) ( F ` p ) ) ( meet ` K ) W ) ) |
| 25 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( K e. HL /\ W e. H ) ) |
| 26 |
1 2
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
| 27 |
26
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> `' F e. T ) |
| 28 |
4 5 1 2
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) e. ( Atoms ` K ) /\ -. ( F ` p ) ( le ` K ) W ) ) |
| 29 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 30 |
4 20 29 5 1 2 3
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ `' F e. T /\ ( ( F ` p ) e. ( Atoms ` K ) /\ -. ( F ` p ) ( le ` K ) W ) ) -> ( R ` `' F ) = ( ( ( F ` p ) ( join ` K ) ( `' F ` ( F ` p ) ) ) ( meet ` K ) W ) ) |
| 31 |
25 27 28 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( R ` `' F ) = ( ( ( F ` p ) ( join ` K ) ( `' F ` ( F ` p ) ) ) ( meet ` K ) W ) ) |
| 32 |
4 20 29 5 1 2 3
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( R ` F ) = ( ( p ( join ` K ) ( F ` p ) ) ( meet ` K ) W ) ) |
| 33 |
24 31 32
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( R ` `' F ) = ( R ` F ) ) |
| 34 |
33
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( R ` `' F ) = ( R ` F ) ) |
| 35 |
7 34
|
rexlimddv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |