Step |
Hyp |
Ref |
Expression |
1 |
|
trlid0.b |
|- B = ( Base ` K ) |
2 |
|
trlid0.z |
|- .0. = ( 0. ` K ) |
3 |
|
trlid0.h |
|- H = ( LHyp ` K ) |
4 |
|
trlid0.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
6 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
7 |
5 6 3
|
lhpexnle |
|- ( ( K e. HL /\ W e. H ) -> E. p e. ( Atoms ` K ) -. p ( le ` K ) W ) |
8 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) |
10 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
11 |
1 3 10
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) |
12 |
11
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( _I |` B ) e. ( ( LTrn ` K ) ` W ) ) |
13 |
|
eqid |
|- ( _I |` B ) = ( _I |` B ) |
14 |
1 5 6 3 10
|
ltrnideq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( _I |` B ) e. ( ( LTrn ` K ) ` W ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( _I |` B ) = ( _I |` B ) <-> ( ( _I |` B ) ` p ) = p ) ) |
15 |
8 12 9 14
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( _I |` B ) = ( _I |` B ) <-> ( ( _I |` B ) ` p ) = p ) ) |
16 |
13 15
|
mpbii |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( ( _I |` B ) ` p ) = p ) |
17 |
5 2 6 3 10 4
|
trl0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) /\ ( ( _I |` B ) e. ( ( LTrn ` K ) ` W ) /\ ( ( _I |` B ) ` p ) = p ) ) -> ( R ` ( _I |` B ) ) = .0. ) |
18 |
8 9 12 16 17
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. ( Atoms ` K ) /\ -. p ( le ` K ) W ) ) -> ( R ` ( _I |` B ) ) = .0. ) |
19 |
7 18
|
rexlimddv |
|- ( ( K e. HL /\ W e. H ) -> ( R ` ( _I |` B ) ) = .0. ) |