| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlid0b.b |
|- B = ( Base ` K ) |
| 2 |
|
trlid0b.z |
|- .0. = ( 0. ` K ) |
| 3 |
|
trlid0b.h |
|- H = ( LHyp ` K ) |
| 4 |
|
trlid0b.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
trlid0b.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 7 |
1 6 3 4 5
|
trlnidatb |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F =/= ( _I |` B ) <-> ( R ` F ) e. ( Atoms ` K ) ) ) |
| 8 |
2 6 3 4 5
|
trlatn0 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. ( Atoms ` K ) <-> ( R ` F ) =/= .0. ) ) |
| 9 |
7 8
|
bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F =/= ( _I |` B ) <-> ( R ` F ) =/= .0. ) ) |
| 10 |
9
|
necon4bid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F = ( _I |` B ) <-> ( R ` F ) = .0. ) ) |