Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021) (Proof shortened by AV, 29-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
2 | 1 | simplbi | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |