Step |
Hyp |
Ref |
Expression |
1 |
|
trljat.l |
|- .<_ = ( le ` K ) |
2 |
|
trljat.j |
|- .\/ = ( join ` K ) |
3 |
|
trljat.a |
|- A = ( Atoms ` K ) |
4 |
|
trljat.h |
|- H = ( LHyp ` K ) |
5 |
|
trljat.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
trljat.r |
|- R = ( ( trL ` K ) ` W ) |
7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
8 |
1 2 7 3 4 5 6
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
9 |
8
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( R ` F ) .\/ P ) = ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ P ) ) |
10 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. HL ) |
11 |
10
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat ) |
12 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. A ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
15 |
12 14
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) ) |
16 |
13 4 5 6
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) ) |
17 |
16
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) e. ( Base ` K ) ) |
18 |
13 2
|
latjcom |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( R ` F ) e. ( Base ` K ) ) -> ( P .\/ ( R ` F ) ) = ( ( R ` F ) .\/ P ) ) |
19 |
11 15 17 18
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( ( R ` F ) .\/ P ) ) |
20 |
13 4 5
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( F ` P ) e. ( Base ` K ) ) |
21 |
15 20
|
syld3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) e. ( Base ` K ) ) |
22 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
23 |
11 15 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
24 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. H ) |
25 |
13 4
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
26 |
24 25
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) ) |
27 |
13 1 2
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> P .<_ ( P .\/ ( F ` P ) ) ) |
28 |
11 15 21 27
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P .<_ ( P .\/ ( F ` P ) ) ) |
29 |
13 1 2 7 3
|
atmod2i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ ( F ` P ) ) ) -> ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ P ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ P ) ) ) |
30 |
10 12 23 26 28 29
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ P ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ P ) ) ) |
31 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
32 |
1 2 31 3 4
|
lhpjat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = ( 1. ` K ) ) |
33 |
32
|
3adant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = ( 1. ` K ) ) |
34 |
33
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ P ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) ) |
35 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
36 |
10 35
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. OL ) |
37 |
13 7 31
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) ) |
38 |
36 23 37
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) ) |
39 |
30 34 38
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) = ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ P ) ) |
40 |
9 19 39
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) ) |