Metamath Proof Explorer


Theorem trljat3

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses trljat.l
|- .<_ = ( le ` K )
trljat.j
|- .\/ = ( join ` K )
trljat.a
|- A = ( Atoms ` K )
trljat.h
|- H = ( LHyp ` K )
trljat.t
|- T = ( ( LTrn ` K ) ` W )
trljat.r
|- R = ( ( trL ` K ) ` W )
Assertion trljat3
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )

Proof

Step Hyp Ref Expression
1 trljat.l
 |-  .<_ = ( le ` K )
2 trljat.j
 |-  .\/ = ( join ` K )
3 trljat.a
 |-  A = ( Atoms ` K )
4 trljat.h
 |-  H = ( LHyp ` K )
5 trljat.t
 |-  T = ( ( LTrn ` K ) ` W )
6 trljat.r
 |-  R = ( ( trL ` K ) ` W )
7 1 2 3 4 5 6 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) )
8 1 2 3 4 5 6 trljat2
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) )
9 7 8 eqtr4d
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )