| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							trlle.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							trlle.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							trlle.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 4 | 
							
								
							 | 
							trlle.r | 
							 |-  R = ( ( trL ` K ) ` W )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( oc ` K ) = ( oc ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Atoms ` K ) = ( Atoms ` K )  | 
						
						
							| 7 | 
							
								1 5 6 2
							 | 
							lhpocnel | 
							 |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) .<_ W ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) .<_ W ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( join ` K ) = ( join ` K )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( meet ` K ) = ( meet ` K )  | 
						
						
							| 11 | 
							
								1 9 10 6 2 3 4
							 | 
							trlval2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( ( oc ` K ) ` W ) e. ( Atoms ` K ) /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) -> ( R ` F ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							mpd3an3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) = ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) )  | 
						
						
							| 13 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> K e. Lat )  | 
						
						
							| 15 | 
							
								
							 | 
							hlop | 
							 |-  ( K e. HL -> K e. OP )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> K e. OP )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 18 | 
							
								17 2
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ad2antlr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> W e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								17 5
							 | 
							opoccl | 
							 |-  ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								16 19 20
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								17 2 3
							 | 
							ltrncl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( F ` ( ( oc ` K ) ` W ) ) e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							mpd3an3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F ` ( ( oc ` K ) ` W ) ) e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								17 9
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ ( F ` ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								14 21 23 24
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								17 1 10
							 | 
							latmle2 | 
							 |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) .<_ W )  | 
						
						
							| 27 | 
							
								14 25 19 26
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( ( ( oc ` K ) ` W ) ( join ` K ) ( F ` ( ( oc ` K ) ` W ) ) ) ( meet ` K ) W ) .<_ W )  | 
						
						
							| 28 | 
							
								12 27
							 | 
							eqbrtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) .<_ W )  |