| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlnidatb.b |
|- B = ( Base ` K ) |
| 2 |
|
trlnidatb.a |
|- A = ( Atoms ` K ) |
| 3 |
|
trlnidatb.h |
|- H = ( LHyp ` K ) |
| 4 |
|
trlnidatb.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
trlnidatb.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
1 2 3 4 5
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( R ` F ) e. A ) |
| 7 |
6
|
3expia |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F =/= ( _I |` B ) -> ( R ` F ) e. A ) ) |
| 8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 9 |
8 2 3
|
lhpexnle |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A -. p ( le ` K ) W ) |
| 10 |
9
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> E. p e. A -. p ( le ` K ) W ) |
| 11 |
1 8 2 3 4
|
ltrnideq |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( F = ( _I |` B ) <-> ( F ` p ) = p ) ) |
| 12 |
11
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( F = ( _I |` B ) <-> ( F ` p ) = p ) ) |
| 13 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F ` p ) = p ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F ` p ) = p ) -> ( p e. A /\ -. p ( le ` K ) W ) ) |
| 15 |
|
simp1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F ` p ) = p ) -> F e. T ) |
| 16 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F ` p ) = p ) -> ( F ` p ) = p ) |
| 17 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 18 |
8 17 2 3 4 5
|
trl0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F e. T /\ ( F ` p ) = p ) ) -> ( R ` F ) = ( 0. ` K ) ) |
| 19 |
13 14 15 16 18
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) /\ ( F ` p ) = p ) -> ( R ` F ) = ( 0. ` K ) ) |
| 20 |
19
|
3expia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) = p -> ( R ` F ) = ( 0. ` K ) ) ) |
| 21 |
|
simplll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> K e. HL ) |
| 22 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 23 |
17 2
|
atn0 |
|- ( ( K e. AtLat /\ ( R ` F ) e. A ) -> ( R ` F ) =/= ( 0. ` K ) ) |
| 24 |
23
|
ex |
|- ( K e. AtLat -> ( ( R ` F ) e. A -> ( R ` F ) =/= ( 0. ` K ) ) ) |
| 25 |
21 22 24
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( ( R ` F ) e. A -> ( R ` F ) =/= ( 0. ` K ) ) ) |
| 26 |
25
|
necon2bd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( ( R ` F ) = ( 0. ` K ) -> -. ( R ` F ) e. A ) ) |
| 27 |
20 26
|
syld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( ( F ` p ) = p -> -. ( R ` F ) e. A ) ) |
| 28 |
12 27
|
sylbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ ( p e. A /\ -. p ( le ` K ) W ) ) -> ( F = ( _I |` B ) -> -. ( R ` F ) e. A ) ) |
| 29 |
10 28
|
rexlimddv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F = ( _I |` B ) -> -. ( R ` F ) e. A ) ) |
| 30 |
29
|
necon2ad |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A -> F =/= ( _I |` B ) ) ) |
| 31 |
7 30
|
impbid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F =/= ( _I |` B ) <-> ( R ` F ) e. A ) ) |