| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trlres.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | trlres.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | trlres.d |  |-  ( ph -> F ( Trails ` G ) P ) | 
						
							| 4 |  | trlres.n |  |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 5 |  | trlres.h |  |-  H = ( F prefix N ) | 
						
							| 6 |  | trlres.s |  |-  ( ph -> ( Vtx ` S ) = V ) | 
						
							| 7 |  | trlres.e |  |-  ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 8 |  | trlres.q |  |-  Q = ( P |` ( 0 ... N ) ) | 
						
							| 9 |  | trliswlk |  |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 11 | 1 2 10 4 6 7 5 8 | wlkres |  |-  ( ph -> H ( Walks ` S ) Q ) | 
						
							| 12 | 1 2 3 4 5 | trlreslem |  |-  ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 13 |  | f1of1 |  |-  ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) -> H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 14 |  | df-f1 |  |-  ( H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( H : ( 0 ..^ ( # ` H ) ) --> dom ( I |` ( F " ( 0 ..^ N ) ) ) /\ Fun `' H ) ) | 
						
							| 15 | 14 | simprbi |  |-  ( H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) -> Fun `' H ) | 
						
							| 16 | 12 13 15 | 3syl |  |-  ( ph -> Fun `' H ) | 
						
							| 17 |  | istrl |  |-  ( H ( Trails ` S ) Q <-> ( H ( Walks ` S ) Q /\ Fun `' H ) ) | 
						
							| 18 | 11 16 17 | sylanbrc |  |-  ( ph -> H ( Trails ` S ) Q ) |