Step |
Hyp |
Ref |
Expression |
1 |
|
trlres.v |
|- V = ( Vtx ` G ) |
2 |
|
trlres.i |
|- I = ( iEdg ` G ) |
3 |
|
trlres.d |
|- ( ph -> F ( Trails ` G ) P ) |
4 |
|
trlres.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
trlres.h |
|- H = ( F prefix N ) |
6 |
|
trlres.s |
|- ( ph -> ( Vtx ` S ) = V ) |
7 |
|
trlres.e |
|- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
8 |
|
trlres.q |
|- Q = ( P |` ( 0 ... N ) ) |
9 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
10 |
3 9
|
syl |
|- ( ph -> F ( Walks ` G ) P ) |
11 |
1 2 10 4 6 7 5 8
|
wlkres |
|- ( ph -> H ( Walks ` S ) Q ) |
12 |
1 2 3 4 5
|
trlreslem |
|- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
13 |
|
f1of1 |
|- ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) -> H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
14 |
|
df-f1 |
|- ( H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( H : ( 0 ..^ ( # ` H ) ) --> dom ( I |` ( F " ( 0 ..^ N ) ) ) /\ Fun `' H ) ) |
15 |
14
|
simprbi |
|- ( H : ( 0 ..^ ( # ` H ) ) -1-1-> dom ( I |` ( F " ( 0 ..^ N ) ) ) -> Fun `' H ) |
16 |
12 13 15
|
3syl |
|- ( ph -> Fun `' H ) |
17 |
|
istrl |
|- ( H ( Trails ` S ) Q <-> ( H ( Walks ` S ) Q /\ Fun `' H ) ) |
18 |
11 16 17
|
sylanbrc |
|- ( ph -> H ( Trails ` S ) Q ) |