| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trlres.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | trlres.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | trlres.d |  |-  ( ph -> F ( Trails ` G ) P ) | 
						
							| 4 |  | trlres.n |  |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 5 |  | trlres.h |  |-  H = ( F prefix N ) | 
						
							| 6 | 2 | trlf1 |  |-  ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) | 
						
							| 8 |  | elfzouz2 |  |-  ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) | 
						
							| 9 |  | fzoss2 |  |-  ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 10 | 4 8 9 | 3syl |  |-  ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 11 |  | f1ores |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) | 
						
							| 12 | 7 10 11 | syl2anc |  |-  ( ph -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) | 
						
							| 13 |  | trliswlk |  |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 14 | 2 | wlkf |  |-  ( F ( Walks ` G ) P -> F e. Word dom I ) | 
						
							| 15 | 3 13 14 | 3syl |  |-  ( ph -> F e. Word dom I ) | 
						
							| 16 |  | fzossfz |  |-  ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) | 
						
							| 17 | 16 4 | sselid |  |-  ( ph -> N e. ( 0 ... ( # ` F ) ) ) | 
						
							| 18 |  | pfxres |  |-  ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) | 
						
							| 19 | 15 17 18 | syl2anc |  |-  ( ph -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) | 
						
							| 20 | 5 19 | eqtrid |  |-  ( ph -> H = ( F |` ( 0 ..^ N ) ) ) | 
						
							| 21 | 5 | fveq2i |  |-  ( # ` H ) = ( # ` ( F prefix N ) ) | 
						
							| 22 |  | elfzofz |  |-  ( N e. ( 0 ..^ ( # ` F ) ) -> N e. ( 0 ... ( # ` F ) ) ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> N e. ( 0 ... ( # ` F ) ) ) | 
						
							| 24 |  | pfxlen |  |-  ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix N ) ) = N ) | 
						
							| 25 | 15 23 24 | syl2anc |  |-  ( ph -> ( # ` ( F prefix N ) ) = N ) | 
						
							| 26 | 21 25 | eqtrid |  |-  ( ph -> ( # ` H ) = N ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) | 
						
							| 28 |  | wrdf |  |-  ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) | 
						
							| 29 |  | fimass |  |-  ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( F " ( 0 ..^ N ) ) C_ dom I ) | 
						
							| 30 | 14 28 29 | 3syl |  |-  ( F ( Walks ` G ) P -> ( F " ( 0 ..^ N ) ) C_ dom I ) | 
						
							| 31 | 3 13 30 | 3syl |  |-  ( ph -> ( F " ( 0 ..^ N ) ) C_ dom I ) | 
						
							| 32 |  | ssdmres |  |-  ( ( F " ( 0 ..^ N ) ) C_ dom I <-> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) | 
						
							| 33 | 31 32 | sylib |  |-  ( ph -> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) | 
						
							| 34 | 20 27 33 | f1oeq123d |  |-  ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 35 | 12 34 | mpbird |  |-  ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |