Step |
Hyp |
Ref |
Expression |
1 |
|
trlres.v |
|- V = ( Vtx ` G ) |
2 |
|
trlres.i |
|- I = ( iEdg ` G ) |
3 |
|
trlres.d |
|- ( ph -> F ( Trails ` G ) P ) |
4 |
|
trlres.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
trlres.h |
|- H = ( F prefix N ) |
6 |
2
|
trlf1 |
|- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
7 |
3 6
|
syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
8 |
|
elfzouz2 |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
9 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
10 |
4 8 9
|
3syl |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
11 |
|
f1ores |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) |
12 |
7 10 11
|
syl2anc |
|- ( ph -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) |
13 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
14 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
15 |
3 13 14
|
3syl |
|- ( ph -> F e. Word dom I ) |
16 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
17 |
16 4
|
sselid |
|- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
18 |
|
pfxres |
|- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
19 |
15 17 18
|
syl2anc |
|- ( ph -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
20 |
5 19
|
eqtrid |
|- ( ph -> H = ( F |` ( 0 ..^ N ) ) ) |
21 |
5
|
fveq2i |
|- ( # ` H ) = ( # ` ( F prefix N ) ) |
22 |
|
elfzofz |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> N e. ( 0 ... ( # ` F ) ) ) |
23 |
4 22
|
syl |
|- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
24 |
|
pfxlen |
|- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix N ) ) = N ) |
25 |
15 23 24
|
syl2anc |
|- ( ph -> ( # ` ( F prefix N ) ) = N ) |
26 |
21 25
|
eqtrid |
|- ( ph -> ( # ` H ) = N ) |
27 |
26
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) |
28 |
|
wrdf |
|- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
29 |
|
fimass |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
30 |
14 28 29
|
3syl |
|- ( F ( Walks ` G ) P -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
31 |
3 13 30
|
3syl |
|- ( ph -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
32 |
|
ssdmres |
|- ( ( F " ( 0 ..^ N ) ) C_ dom I <-> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
33 |
31 32
|
sylib |
|- ( ph -> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
34 |
20 27 33
|
f1oeq123d |
|- ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) <-> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) -1-1-onto-> ( F " ( 0 ..^ N ) ) ) ) |
35 |
12 34
|
mpbird |
|- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |