Metamath Proof Explorer


Theorem trlsegvdeglem1

Description: Lemma for trlsegvdeg . (Contributed by AV, 20-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v
|- V = ( Vtx ` G )
trlsegvdeg.i
|- I = ( iEdg ` G )
trlsegvdeg.f
|- ( ph -> Fun I )
trlsegvdeg.n
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) )
trlsegvdeg.u
|- ( ph -> U e. V )
trlsegvdeg.w
|- ( ph -> F ( Trails ` G ) P )
Assertion trlsegvdeglem1
|- ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) )

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v
 |-  V = ( Vtx ` G )
2 trlsegvdeg.i
 |-  I = ( iEdg ` G )
3 trlsegvdeg.f
 |-  ( ph -> Fun I )
4 trlsegvdeg.n
 |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) )
5 trlsegvdeg.u
 |-  ( ph -> U e. V )
6 trlsegvdeg.w
 |-  ( ph -> F ( Trails ` G ) P )
7 trliswlk
 |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P )
8 1 wlkpvtx
 |-  ( F ( Walks ` G ) P -> ( N e. ( 0 ... ( # ` F ) ) -> ( P ` N ) e. V ) )
9 elfzofz
 |-  ( N e. ( 0 ..^ ( # ` F ) ) -> N e. ( 0 ... ( # ` F ) ) )
10 8 9 impel
 |-  ( ( F ( Walks ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` N ) e. V )
11 1 wlkpvtx
 |-  ( F ( Walks ` G ) P -> ( ( N + 1 ) e. ( 0 ... ( # ` F ) ) -> ( P ` ( N + 1 ) ) e. V ) )
12 fzofzp1
 |-  ( N e. ( 0 ..^ ( # ` F ) ) -> ( N + 1 ) e. ( 0 ... ( # ` F ) ) )
13 11 12 impel
 |-  ( ( F ( Walks ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` ( N + 1 ) ) e. V )
14 10 13 jca
 |-  ( ( F ( Walks ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) )
15 14 ex
 |-  ( F ( Walks ` G ) P -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) )
16 6 7 15 3syl
 |-  ( ph -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) )
17 4 16 mpd
 |-  ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) )