Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
|- V = ( Vtx ` G ) |
2 |
|
trlsegvdeg.i |
|- I = ( iEdg ` G ) |
3 |
|
trlsegvdeg.f |
|- ( ph -> Fun I ) |
4 |
|
trlsegvdeg.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
trlsegvdeg.u |
|- ( ph -> U e. V ) |
6 |
|
trlsegvdeg.w |
|- ( ph -> F ( Trails ` G ) P ) |
7 |
|
trlsegvdeg.vx |
|- ( ph -> ( Vtx ` X ) = V ) |
8 |
|
trlsegvdeg.vy |
|- ( ph -> ( Vtx ` Y ) = V ) |
9 |
|
trlsegvdeg.vz |
|- ( ph -> ( Vtx ` Z ) = V ) |
10 |
|
trlsegvdeg.ix |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
11 |
|
trlsegvdeg.iy |
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
12 |
|
trlsegvdeg.iz |
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem4 |
|- ( ph -> dom ( iEdg ` X ) = ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
14 |
2
|
trlf1 |
|- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
15 |
|
f1fun |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> Fun F ) |
16 |
6 14 15
|
3syl |
|- ( ph -> Fun F ) |
17 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
18 |
|
imafi |
|- ( ( Fun F /\ ( 0 ..^ N ) e. Fin ) -> ( F " ( 0 ..^ N ) ) e. Fin ) |
19 |
16 17 18
|
sylancl |
|- ( ph -> ( F " ( 0 ..^ N ) ) e. Fin ) |
20 |
|
infi |
|- ( ( F " ( 0 ..^ N ) ) e. Fin -> ( ( F " ( 0 ..^ N ) ) i^i dom I ) e. Fin ) |
21 |
19 20
|
syl |
|- ( ph -> ( ( F " ( 0 ..^ N ) ) i^i dom I ) e. Fin ) |
22 |
13 21
|
eqeltrd |
|- ( ph -> dom ( iEdg ` X ) e. Fin ) |