Metamath Proof Explorer


Theorem trlsfval

Description: The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 28-Dec-2020) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion trlsfval
|- ( Trails ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) }

Proof

Step Hyp Ref Expression
1 biidd
 |-  ( ( T. /\ g = G ) -> ( Fun `' f <-> Fun `' f ) )
2 wksv
 |-  { <. f , p >. | f ( Walks ` G ) p } e. _V
3 2 a1i
 |-  ( T. -> { <. f , p >. | f ( Walks ` G ) p } e. _V )
4 df-trls
 |-  Trails = ( g e. _V |-> { <. f , p >. | ( f ( Walks ` g ) p /\ Fun `' f ) } )
5 1 3 4 fvmptopab
 |-  ( T. -> ( Trails ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) } )
6 5 mptru
 |-  ( Trails ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' f ) }