Step |
Hyp |
Ref |
Expression |
1 |
|
trlset.b |
|- B = ( Base ` K ) |
2 |
|
trlset.l |
|- .<_ = ( le ` K ) |
3 |
|
trlset.j |
|- .\/ = ( join ` K ) |
4 |
|
trlset.m |
|- ./\ = ( meet ` K ) |
5 |
|
trlset.a |
|- A = ( Atoms ` K ) |
6 |
|
trlset.h |
|- H = ( LHyp ` K ) |
7 |
|
trlset.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
trlset.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
1 2 3 4 5 6 7 8
|
trlset |
|- ( ( K e. V /\ W e. H ) -> R = ( f e. T |-> ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) ) ) ) |
10 |
9
|
fveq1d |
|- ( ( K e. V /\ W e. H ) -> ( R ` F ) = ( ( f e. T |-> ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) ) ) ` F ) ) |
11 |
|
fveq1 |
|- ( f = F -> ( f ` p ) = ( F ` p ) ) |
12 |
11
|
oveq2d |
|- ( f = F -> ( p .\/ ( f ` p ) ) = ( p .\/ ( F ` p ) ) ) |
13 |
12
|
oveq1d |
|- ( f = F -> ( ( p .\/ ( f ` p ) ) ./\ W ) = ( ( p .\/ ( F ` p ) ) ./\ W ) ) |
14 |
13
|
eqeq2d |
|- ( f = F -> ( x = ( ( p .\/ ( f ` p ) ) ./\ W ) <-> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) |
15 |
14
|
imbi2d |
|- ( f = F -> ( ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) <-> ( -. p .<_ W -> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) ) |
16 |
15
|
ralbidv |
|- ( f = F -> ( A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) <-> A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) ) |
17 |
16
|
riotabidv |
|- ( f = F -> ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) ) = ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) ) |
18 |
|
eqid |
|- ( f e. T |-> ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) ) ) = ( f e. T |-> ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) ) ) |
19 |
|
riotaex |
|- ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) e. _V |
20 |
17 18 19
|
fvmpt |
|- ( F e. T -> ( ( f e. T |-> ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( f ` p ) ) ./\ W ) ) ) ) ` F ) = ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) ) |
21 |
10 20
|
sylan9eq |
|- ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> ( R ` F ) = ( iota_ x e. B A. p e. A ( -. p .<_ W -> x = ( ( p .\/ ( F ` p ) ) ./\ W ) ) ) ) |