Step |
Hyp |
Ref |
Expression |
1 |
|
trlval2.l |
|- .<_ = ( le ` K ) |
2 |
|
trlval2.j |
|- .\/ = ( join ` K ) |
3 |
|
trlval2.m |
|- ./\ = ( meet ` K ) |
4 |
|
trlval2.a |
|- A = ( Atoms ` K ) |
5 |
|
trlval2.h |
|- H = ( LHyp ` K ) |
6 |
|
trlval2.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
trlval2.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
9 |
8
|
anim1i |
|- ( ( K e. HL /\ W e. H ) -> ( K e. Lat /\ W e. H ) ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 1 2 3 4 5 6 7
|
trlval |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T ) -> ( R ` F ) = ( iota_ x e. ( Base ` K ) A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
12 |
11
|
3adant3 |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( iota_ x e. ( Base ` K ) A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
13 |
|
simp1l |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat ) |
14 |
|
simp3l |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. A ) |
15 |
10 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
16 |
14 15
|
syl |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) ) |
17 |
10 5 6
|
ltrncl |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( F ` P ) e. ( Base ` K ) ) |
18 |
16 17
|
syld3an3 |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) e. ( Base ` K ) ) |
19 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
20 |
13 16 18 19
|
syl3anc |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
21 |
|
simp1r |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. H ) |
22 |
10 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
23 |
21 22
|
syl |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) ) |
24 |
10 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ./\ W ) e. ( Base ` K ) ) |
25 |
13 20 23 24
|
syl3anc |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ./\ W ) e. ( Base ` K ) ) |
26 |
|
simpl3l |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ x e. ( Base ` K ) ) -> P e. A ) |
27 |
|
simpl3r |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ x e. ( Base ` K ) ) -> -. P .<_ W ) |
28 |
|
breq1 |
|- ( q = P -> ( q .<_ W <-> P .<_ W ) ) |
29 |
28
|
notbid |
|- ( q = P -> ( -. q .<_ W <-> -. P .<_ W ) ) |
30 |
|
id |
|- ( q = P -> q = P ) |
31 |
|
fveq2 |
|- ( q = P -> ( F ` q ) = ( F ` P ) ) |
32 |
30 31
|
oveq12d |
|- ( q = P -> ( q .\/ ( F ` q ) ) = ( P .\/ ( F ` P ) ) ) |
33 |
32
|
oveq1d |
|- ( q = P -> ( ( q .\/ ( F ` q ) ) ./\ W ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
34 |
33
|
eqeq2d |
|- ( q = P -> ( x = ( ( q .\/ ( F ` q ) ) ./\ W ) <-> x = ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) |
35 |
29 34
|
imbi12d |
|- ( q = P -> ( ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> ( -. P .<_ W -> x = ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) ) |
36 |
35
|
rspcv |
|- ( P e. A -> ( A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) -> ( -. P .<_ W -> x = ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) ) |
37 |
36
|
com23 |
|- ( P e. A -> ( -. P .<_ W -> ( A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) -> x = ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) ) |
38 |
26 27 37
|
sylc |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ x e. ( Base ` K ) ) -> ( A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) -> x = ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) |
39 |
|
simp11 |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> ( K e. Lat /\ W e. H ) ) |
40 |
|
simp12 |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> F e. T ) |
41 |
|
simp13l |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> P e. A ) |
42 |
|
simp13r |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> -. P .<_ W ) |
43 |
|
simp3 |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> q e. A ) |
44 |
|
simp2 |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> -. q .<_ W ) |
45 |
1 2 3 4 5 6
|
ltrnu |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) |
46 |
39 40 41 42 43 44 45
|
syl222anc |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> ( ( P .\/ ( F ` P ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) ) |
47 |
|
eqeq2 |
|- ( ( ( P .\/ ( F ` P ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) <-> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
48 |
47
|
biimpd |
|- ( ( ( P .\/ ( F ` P ) ) ./\ W ) = ( ( q .\/ ( F ` q ) ) ./\ W ) -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
49 |
46 48
|
syl |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ -. q .<_ W /\ q e. A ) -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) |
50 |
49
|
3exp |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( -. q .<_ W -> ( q e. A -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) ) |
51 |
50
|
com24 |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) -> ( q e. A -> ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) ) |
52 |
51
|
ralrimdv |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) -> A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
53 |
52
|
adantr |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ x e. ( Base ` K ) ) -> ( x = ( ( P .\/ ( F ` P ) ) ./\ W ) -> A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) ) |
54 |
38 53
|
impbid |
|- ( ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) /\ x e. ( Base ` K ) ) -> ( A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) <-> x = ( ( P .\/ ( F ` P ) ) ./\ W ) ) ) |
55 |
25 54
|
riota5 |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( iota_ x e. ( Base ` K ) A. q e. A ( -. q .<_ W -> x = ( ( q .\/ ( F ` q ) ) ./\ W ) ) ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
56 |
12 55
|
eqtrd |
|- ( ( ( K e. Lat /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
57 |
9 56
|
syl3an1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |