Step |
Hyp |
Ref |
Expression |
1 |
|
trlval3.l |
|- .<_ = ( le ` K ) |
2 |
|
trlval3.j |
|- .\/ = ( join ` K ) |
3 |
|
trlval3.m |
|- ./\ = ( meet ` K ) |
4 |
|
trlval3.a |
|- A = ( Atoms ` K ) |
5 |
|
trlval3.h |
|- H = ( LHyp ` K ) |
6 |
|
trlval3.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
trlval3.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
1 2 3 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
9 |
1 2 4 5 6 7
|
trljat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) ) |
10 |
9
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( R ` F ) ) ./\ W ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) |
11 |
8 10
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( R ` F ) ) ./\ W ) ) |