Step |
Hyp |
Ref |
Expression |
1 |
|
trnset.a |
|- A = ( Atoms ` K ) |
2 |
|
trnset.s |
|- S = ( PSubSp ` K ) |
3 |
|
trnset.p |
|- .+ = ( +P ` K ) |
4 |
|
trnset.o |
|- ._|_ = ( _|_P ` K ) |
5 |
|
trnset.w |
|- W = ( WAtoms ` K ) |
6 |
|
trnset.m |
|- M = ( PAut ` K ) |
7 |
|
trnset.l |
|- L = ( Dil ` K ) |
8 |
|
trnset.t |
|- T = ( Trn ` K ) |
9 |
|
elex |
|- ( K e. C -> K e. _V ) |
10 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
11 |
10 1
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
12 |
|
fveq2 |
|- ( k = K -> ( Dil ` k ) = ( Dil ` K ) ) |
13 |
12 7
|
eqtr4di |
|- ( k = K -> ( Dil ` k ) = L ) |
14 |
13
|
fveq1d |
|- ( k = K -> ( ( Dil ` k ) ` d ) = ( L ` d ) ) |
15 |
|
fveq2 |
|- ( k = K -> ( WAtoms ` k ) = ( WAtoms ` K ) ) |
16 |
15 5
|
eqtr4di |
|- ( k = K -> ( WAtoms ` k ) = W ) |
17 |
16
|
fveq1d |
|- ( k = K -> ( ( WAtoms ` k ) ` d ) = ( W ` d ) ) |
18 |
|
fveq2 |
|- ( k = K -> ( +P ` k ) = ( +P ` K ) ) |
19 |
18 3
|
eqtr4di |
|- ( k = K -> ( +P ` k ) = .+ ) |
20 |
19
|
oveqd |
|- ( k = K -> ( q ( +P ` k ) ( f ` q ) ) = ( q .+ ( f ` q ) ) ) |
21 |
|
fveq2 |
|- ( k = K -> ( _|_P ` k ) = ( _|_P ` K ) ) |
22 |
21 4
|
eqtr4di |
|- ( k = K -> ( _|_P ` k ) = ._|_ ) |
23 |
22
|
fveq1d |
|- ( k = K -> ( ( _|_P ` k ) ` { d } ) = ( ._|_ ` { d } ) ) |
24 |
20 23
|
ineq12d |
|- ( k = K -> ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) ) |
25 |
19
|
oveqd |
|- ( k = K -> ( r ( +P ` k ) ( f ` r ) ) = ( r .+ ( f ` r ) ) ) |
26 |
25 23
|
ineq12d |
|- ( k = K -> ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) ) |
27 |
24 26
|
eqeq12d |
|- ( k = K -> ( ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) <-> ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) ) ) |
28 |
17 27
|
raleqbidv |
|- ( k = K -> ( A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) <-> A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) ) ) |
29 |
17 28
|
raleqbidv |
|- ( k = K -> ( A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) <-> A. q e. ( W ` d ) A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) ) ) |
30 |
14 29
|
rabeqbidv |
|- ( k = K -> { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } = { f e. ( L ` d ) | A. q e. ( W ` d ) A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) } ) |
31 |
11 30
|
mpteq12dv |
|- ( k = K -> ( d e. ( Atoms ` k ) |-> { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } ) = ( d e. A |-> { f e. ( L ` d ) | A. q e. ( W ` d ) A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) } ) ) |
32 |
|
df-trnN |
|- Trn = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> { f e. ( ( Dil ` k ) ` d ) | A. q e. ( ( WAtoms ` k ) ` d ) A. r e. ( ( WAtoms ` k ) ` d ) ( ( q ( +P ` k ) ( f ` q ) ) i^i ( ( _|_P ` k ) ` { d } ) ) = ( ( r ( +P ` k ) ( f ` r ) ) i^i ( ( _|_P ` k ) ` { d } ) ) } ) ) |
33 |
31 32 1
|
mptfvmpt |
|- ( K e. _V -> ( Trn ` K ) = ( d e. A |-> { f e. ( L ` d ) | A. q e. ( W ` d ) A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) } ) ) |
34 |
8 33
|
syl5eq |
|- ( K e. _V -> T = ( d e. A |-> { f e. ( L ` d ) | A. q e. ( W ` d ) A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) } ) ) |
35 |
9 34
|
syl |
|- ( K e. C -> T = ( d e. A |-> { f e. ( L ` d ) | A. q e. ( W ` d ) A. r e. ( W ` d ) ( ( q .+ ( f ` q ) ) i^i ( ._|_ ` { d } ) ) = ( ( r .+ ( f ` r ) ) i^i ( ._|_ ` { d } ) ) } ) ) |