Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tron | |- Tr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 | |- ( Tr On <-> A. x e. On x C_ On ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | elon | |- ( x e. On <-> Ord x ) |
| 4 | ordelord | |- ( ( Ord x /\ y e. x ) -> Ord y ) |
|
| 5 | 3 4 | sylanb | |- ( ( x e. On /\ y e. x ) -> Ord y ) |
| 6 | 5 | ex | |- ( x e. On -> ( y e. x -> Ord y ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | 7 | elon | |- ( y e. On <-> Ord y ) |
| 9 | 6 8 | imbitrrdi | |- ( x e. On -> ( y e. x -> y e. On ) ) |
| 10 | 9 | ssrdv | |- ( x e. On -> x C_ On ) |
| 11 | 1 10 | mprgbir | |- Tr On |