Metamath Proof Explorer


Theorem trpred

Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024)

Ref Expression
Assertion trpred
|- ( ( Tr A /\ X e. A ) -> Pred ( _E , A , X ) = X )

Proof

Step Hyp Ref Expression
1 predep
 |-  ( X e. A -> Pred ( _E , A , X ) = ( A i^i X ) )
2 1 adantl
 |-  ( ( Tr A /\ X e. A ) -> Pred ( _E , A , X ) = ( A i^i X ) )
3 trss
 |-  ( Tr A -> ( X e. A -> X C_ A ) )
4 3 imp
 |-  ( ( Tr A /\ X e. A ) -> X C_ A )
5 sseqin2
 |-  ( X C_ A <-> ( A i^i X ) = X )
6 4 5 sylib
 |-  ( ( Tr A /\ X e. A ) -> ( A i^i X ) = X )
7 2 6 eqtrd
 |-  ( ( Tr A /\ X e. A ) -> Pred ( _E , A , X ) = X )