Step |
Hyp |
Ref |
Expression |
1 |
|
predeq1 |
|- ( R = S -> Pred ( R , A , y ) = Pred ( S , A , y ) ) |
2 |
1
|
iuneq2d |
|- ( R = S -> U_ y e. a Pred ( R , A , y ) = U_ y e. a Pred ( S , A , y ) ) |
3 |
2
|
mpteq2dv |
|- ( R = S -> ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) = ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) ) |
4 |
|
predeq1 |
|- ( R = S -> Pred ( R , A , X ) = Pred ( S , A , X ) ) |
5 |
|
rdgeq12 |
|- ( ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) = ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) /\ Pred ( R , A , X ) = Pred ( S , A , X ) ) -> rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) = rec ( ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) , Pred ( S , A , X ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( R = S -> rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) = rec ( ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) , Pred ( S , A , X ) ) ) |
7 |
6
|
reseq1d |
|- ( R = S -> ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) = ( rec ( ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) , Pred ( S , A , X ) ) |` _om ) ) |
8 |
7
|
rneqd |
|- ( R = S -> ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) = ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) , Pred ( S , A , X ) ) |` _om ) ) |
9 |
8
|
unieqd |
|- ( R = S -> U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) , Pred ( S , A , X ) ) |` _om ) ) |
10 |
|
df-trpred |
|- TrPred ( R , A , X ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( R , A , y ) ) , Pred ( R , A , X ) ) |` _om ) |
11 |
|
df-trpred |
|- TrPred ( S , A , X ) = U. ran ( rec ( ( a e. _V |-> U_ y e. a Pred ( S , A , y ) ) , Pred ( S , A , X ) ) |` _om ) |
12 |
9 10 11
|
3eqtr4g |
|- ( R = S -> TrPred ( R , A , X ) = TrPred ( S , A , X ) ) |