Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trreleq | |- ( R = S -> ( TrRel R <-> TrRel S ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | coideq | |- ( R = S -> ( R o. R ) = ( S o. S ) )  | 
						|
| 2 | id | |- ( R = S -> R = S )  | 
						|
| 3 | 1 2 | sseq12d | |- ( R = S -> ( ( R o. R ) C_ R <-> ( S o. S ) C_ S ) )  | 
						
| 4 | releq | |- ( R = S -> ( Rel R <-> Rel S ) )  | 
						|
| 5 | 3 4 | anbi12d | |- ( R = S -> ( ( ( R o. R ) C_ R /\ Rel R ) <-> ( ( S o. S ) C_ S /\ Rel S ) ) )  | 
						
| 6 | dftrrel2 | |- ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) )  | 
						|
| 7 | dftrrel2 | |- ( TrRel S <-> ( ( S o. S ) C_ S /\ Rel S ) )  | 
						|
| 8 | 5 6 7 | 3bitr4g | |- ( R = S -> ( TrRel R <-> TrRel S ) )  |