Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994) (Proof shortened by JJ, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trss | |- ( Tr A -> ( B e. A -> B C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 | |- ( Tr A <-> A. x e. A x C_ A ) |
|
| 2 | sseq1 | |- ( x = B -> ( x C_ A <-> B C_ A ) ) |
|
| 3 | 2 | rspccv | |- ( A. x e. A x C_ A -> ( B e. A -> B C_ A ) ) |
| 4 | 1 3 | sylbi | |- ( Tr A -> ( B e. A -> B C_ A ) ) |