Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trssord | |- ( ( Tr A /\ A C_ B /\ Ord B ) -> Ord A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wess | |- ( A C_ B -> ( _E We B -> _E We A ) ) |
|
| 2 | ordwe | |- ( Ord B -> _E We B ) |
|
| 3 | 1 2 | impel | |- ( ( A C_ B /\ Ord B ) -> _E We A ) |
| 4 | 3 | anim2i | |- ( ( Tr A /\ ( A C_ B /\ Ord B ) ) -> ( Tr A /\ _E We A ) ) |
| 5 | 4 | 3impb | |- ( ( Tr A /\ A C_ B /\ Ord B ) -> ( Tr A /\ _E We A ) ) |
| 6 | df-ord | |- ( Ord A <-> ( Tr A /\ _E We A ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( Tr A /\ A C_ B /\ Ord B ) -> Ord A ) |