Metamath Proof Explorer


Theorem trssord

Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994)

Ref Expression
Assertion trssord
|- ( ( Tr A /\ A C_ B /\ Ord B ) -> Ord A )

Proof

Step Hyp Ref Expression
1 wess
 |-  ( A C_ B -> ( _E We B -> _E We A ) )
2 ordwe
 |-  ( Ord B -> _E We B )
3 1 2 impel
 |-  ( ( A C_ B /\ Ord B ) -> _E We A )
4 3 anim2i
 |-  ( ( Tr A /\ ( A C_ B /\ Ord B ) ) -> ( Tr A /\ _E We A ) )
5 4 3impb
 |-  ( ( Tr A /\ A C_ B /\ Ord B ) -> ( Tr A /\ _E We A ) )
6 df-ord
 |-  ( Ord A <-> ( Tr A /\ _E We A ) )
7 5 6 sylibr
 |-  ( ( Tr A /\ A C_ B /\ Ord B ) -> Ord A )