Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | trsuc | |- ( ( Tr A /\ suc B e. A ) -> B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trel | |- ( Tr A -> ( ( B e. suc B /\ suc B e. A ) -> B e. A ) ) |
|
2 | sssucid | |- B C_ suc B |
|
3 | ssexg | |- ( ( B C_ suc B /\ suc B e. A ) -> B e. _V ) |
|
4 | 2 3 | mpan | |- ( suc B e. A -> B e. _V ) |
5 | sucidg | |- ( B e. _V -> B e. suc B ) |
|
6 | 4 5 | syl | |- ( suc B e. A -> B e. suc B ) |
7 | 6 | ancri | |- ( suc B e. A -> ( B e. suc B /\ suc B e. A ) ) |
8 | 1 7 | impel | |- ( ( Tr A /\ suc B e. A ) -> B e. A ) |