Metamath Proof Explorer


Theorem trunanfal

Description: A -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion trunanfal
|- ( ( T. -/\ F. ) <-> T. )

Proof

Step Hyp Ref Expression
1 df-nan
 |-  ( ( T. -/\ F. ) <-> -. ( T. /\ F. ) )
2 truanfal
 |-  ( ( T. /\ F. ) <-> F. )
3 1 2 xchbinx
 |-  ( ( T. -/\ F. ) <-> -. F. )
4 notfal
 |-  ( -. F. <-> T. )
5 3 4 bitri
 |-  ( ( T. -/\ F. ) <-> T. )