Description: A -/\ identity. (Contributed by Anthony Hart, 23-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 10-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trunanfal | |- ( ( T. -/\ F. ) <-> T. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan | |- ( ( T. -/\ F. ) <-> -. ( T. /\ F. ) ) |
|
2 | truanfal | |- ( ( T. /\ F. ) <-> F. ) |
|
3 | 1 2 | xchbinx | |- ( ( T. -/\ F. ) <-> -. F. ) |
4 | notfal | |- ( -. F. <-> T. ) |
|
5 | 3 4 | bitri | |- ( ( T. -/\ F. ) <-> T. ) |