Metamath Proof Explorer


Theorem truni

Description: The union of a class of transitive sets is transitive. Exercise 5(a) of Enderton p. 73. (Contributed by Scott Fenton, 21-Feb-2011) (Proof shortened by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion truni
|- ( A. x e. A Tr x -> Tr U. A )

Proof

Step Hyp Ref Expression
1 triun
 |-  ( A. x e. A Tr x -> Tr U_ x e. A x )
2 uniiun
 |-  U. A = U_ x e. A x
3 treq
 |-  ( U. A = U_ x e. A x -> ( Tr U. A <-> Tr U_ x e. A x ) )
4 2 3 ax-mp
 |-  ( Tr U. A <-> Tr U_ x e. A x )
5 1 4 sylibr
 |-  ( A. x e. A Tr x -> Tr U. A )