Description: The union of a class of transitive sets is transitive. Exercise 5(a) of Enderton p. 73. (Contributed by Scott Fenton, 21-Feb-2011) (Proof shortened by Mario Carneiro, 26-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | truni | |- ( A. x e. A Tr x -> Tr U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triun | |- ( A. x e. A Tr x -> Tr U_ x e. A x ) |
|
2 | uniiun | |- U. A = U_ x e. A x |
|
3 | treq | |- ( U. A = U_ x e. A x -> ( Tr U. A <-> Tr U_ x e. A x ) ) |
|
4 | 2 3 | ax-mp | |- ( Tr U. A <-> Tr U_ x e. A x ) |
5 | 1 4 | sylibr | |- ( A. x e. A Tr x -> Tr U. A ) |