Metamath Proof Explorer


Theorem truxorfal

Description: A \/_ identity. (Contributed by David A. Wheeler, 8-May-2015)

Ref Expression
Assertion truxorfal
|- ( ( T. \/_ F. ) <-> T. )

Proof

Step Hyp Ref Expression
1 df-xor
 |-  ( ( T. \/_ F. ) <-> -. ( T. <-> F. ) )
2 trubifal
 |-  ( ( T. <-> F. ) <-> F. )
3 1 2 xchbinx
 |-  ( ( T. \/_ F. ) <-> -. F. )
4 notfal
 |-  ( -. F. <-> T. )
5 3 4 bitri
 |-  ( ( T. \/_ F. ) <-> T. )