Metamath Proof Explorer


Theorem truxortru

Description: A \/_ identity. (Contributed by David A. Wheeler, 8-May-2015)

Ref Expression
Assertion truxortru
|- ( ( T. \/_ T. ) <-> F. )

Proof

Step Hyp Ref Expression
1 df-xor
 |-  ( ( T. \/_ T. ) <-> -. ( T. <-> T. ) )
2 trubitru
 |-  ( ( T. <-> T. ) <-> T. )
3 1 2 xchbinx
 |-  ( ( T. \/_ T. ) <-> -. T. )
4 nottru
 |-  ( -. T. <-> F. )
5 3 4 bitri
 |-  ( ( T. \/_ T. ) <-> F. )