Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsbi1 | |- ( th -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.1 | |- ( ( ph /\ ps ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | olcd | |- ( ( ph /\ ps ) -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) ) |
| 3 | pm3.13 | |- ( -. ( ph /\ ps ) -> ( -. ph \/ -. ps ) ) |
|
| 4 | 3 | orcd | |- ( -. ( ph /\ ps ) -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) ) |
| 5 | 2 4 | pm2.61i | |- ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) |
| 6 | 5 | a1i | |- ( th -> ( ( -. ph \/ -. ps ) \/ ( ph <-> ps ) ) ) |