Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsbi2 | |- ( th -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21 | |- ( ( -. ph /\ -. ps ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | olcd | |- ( ( -. ph /\ -. ps ) -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |
| 3 | pm4.57 | |- ( -. ( -. ph /\ -. ps ) <-> ( ph \/ ps ) ) |
|
| 4 | 3 | biimpi | |- ( -. ( -. ph /\ -. ps ) -> ( ph \/ ps ) ) |
| 5 | 4 | orcd | |- ( -. ( -. ph /\ -. ps ) -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |
| 6 | 2 5 | pm2.61i | |- ( ( ph \/ ps ) \/ ( ph <-> ps ) ) |
| 7 | 6 | a1i | |- ( th -> ( ( ph \/ ps ) \/ ( ph <-> ps ) ) ) |