Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsk1 | |- ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | |- 1o = { (/) } |
|
| 2 | tsk0 | |- ( ( T e. Tarski /\ T =/= (/) ) -> (/) e. T ) |
|
| 3 | tsksn | |- ( ( T e. Tarski /\ (/) e. T ) -> { (/) } e. T ) |
|
| 4 | 2 3 | syldan | |- ( ( T e. Tarski /\ T =/= (/) ) -> { (/) } e. T ) |
| 5 | 1 4 | eqeltrid | |- ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T ) |