Metamath Proof Explorer


Theorem tsk1

Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion tsk1
|- ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T )

Proof

Step Hyp Ref Expression
1 df1o2
 |-  1o = { (/) }
2 tsk0
 |-  ( ( T e. Tarski /\ T =/= (/) ) -> (/) e. T )
3 tsksn
 |-  ( ( T e. Tarski /\ (/) e. T ) -> { (/) } e. T )
4 2 3 syldan
 |-  ( ( T e. Tarski /\ T =/= (/) ) -> { (/) } e. T )
5 1 4 eqeltrid
 |-  ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T )