Description: One is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | tsk1 | |- ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | |- 1o = { (/) } |
|
2 | tsk0 | |- ( ( T e. Tarski /\ T =/= (/) ) -> (/) e. T ) |
|
3 | tsksn | |- ( ( T e. Tarski /\ (/) e. T ) -> { (/) } e. T ) |
|
4 | 2 3 | syldan | |- ( ( T e. Tarski /\ T =/= (/) ) -> { (/) } e. T ) |
5 | 1 4 | eqeltrid | |- ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T ) |