Metamath Proof Explorer


Theorem tsk2

Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsk2
|- ( ( T e. Tarski /\ T =/= (/) ) -> 2o e. T )

Proof

Step Hyp Ref Expression
1 tsk1
 |-  ( ( T e. Tarski /\ T =/= (/) ) -> 1o e. T )
2 df-2o
 |-  2o = suc 1o
3 1on
 |-  1o e. On
4 tsksuc
 |-  ( ( T e. Tarski /\ 1o e. On /\ 1o e. T ) -> suc 1o e. T )
5 3 4 mp3an2
 |-  ( ( T e. Tarski /\ 1o e. T ) -> suc 1o e. T )
6 2 5 eqeltrid
 |-  ( ( T e. Tarski /\ 1o e. T ) -> 2o e. T )
7 1 6 syldan
 |-  ( ( T e. Tarski /\ T =/= (/) ) -> 2o e. T )